These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
562 related articles for article (PubMed ID: 25218207)
1. Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs. Park WK; Moon M; Kwak MS; Jeon S; Choi GG; Yang JW; Lee B Bioresour Technol; 2014 Nov; 171():343-9. PubMed ID: 25218207 [TBL] [Abstract][Full Text] [Related]
2. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001 [TBL] [Abstract][Full Text] [Related]
3. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Yeh KL; Chang JS Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073 [TBL] [Abstract][Full Text] [Related]
4. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Zheng H; Gao Z; Yin F; Ji X; Huang H Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706 [TBL] [Abstract][Full Text] [Related]
5. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Abreu AP; Fernandes B; Vicente AA; Teixeira J; Dragone G Bioresour Technol; 2012 Aug; 118():61-6. PubMed ID: 22705507 [TBL] [Abstract][Full Text] [Related]
6. Manipulation of fatty acid profile and nutritional quality of Chlorella vulgaris by supplementing with citrus peel fatty acid. Jahromi KG; Koochi ZH; Kavoosi G; Shahsavar A Sci Rep; 2022 May; 12(1):8151. PubMed ID: 35581315 [TBL] [Abstract][Full Text] [Related]
7. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Yeh KL; Chang JS Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209 [TBL] [Abstract][Full Text] [Related]
8. Maximizing Biomass and Lipid Production in Heterotrophic Culture of Chlorella vulgaris: Techno-Economic Assessment. Morowvat MH; Ghasemi Y Recent Pat Food Nutr Agric; 2019; 10(2):115-123. PubMed ID: 30205808 [TBL] [Abstract][Full Text] [Related]
9. Process design for augmentation and spectrofluorometric quantification of neutral lipid by judicious doping of pathway intermediate in the culture of marine Chlorella variabilis for biodiesel application. De Bhowmick G; Vegesna N; Sen R Bioresour Technol; 2015 Dec; 198():781-8. PubMed ID: 26454043 [TBL] [Abstract][Full Text] [Related]
10. Screening, growth medium optimisation and heterotrophic cultivation of microalgae for biodiesel production. Jia Z; Liu Y; Daroch M; Geng S; Cheng JJ Appl Biochem Biotechnol; 2014 Aug; 173(7):1667-79. PubMed ID: 24845038 [TBL] [Abstract][Full Text] [Related]
11. Outdoor cultivation of the green microalga Chlorella vulgaris under stress conditions as a feedstock for biofuel. El-Sheekh MM; Gheda SF; El-Sayed AEB; Abo Shady AM; El-Sheikh ME; Schagerl M Environ Sci Pollut Res Int; 2019 Jun; 26(18):18520-18532. PubMed ID: 31049862 [TBL] [Abstract][Full Text] [Related]
12. Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation. Shen XF; Chu FF; Lam PK; Zeng RJ Water Res; 2015 Sep; 81():294-300. PubMed ID: 26081436 [TBL] [Abstract][Full Text] [Related]
13. NMR techniques for determination of lipid content in microalgal biomass and their use in monitoring the cultivation with biodiesel potential. Sarpal AS; Teixeira CM; Silva PR; da Costa Monteiro TV; da Silva JI; da Cunha VS; Daroda RJ Appl Microbiol Biotechnol; 2016 Mar; 100(5):2471-85. PubMed ID: 26615401 [TBL] [Abstract][Full Text] [Related]
14. Use of diluted urine for cultivation of Chlorella vulgaris. Jaatinen S; Lakaniemi AM; Rintala J Environ Technol; 2016; 37(9):1159-70. PubMed ID: 26508358 [TBL] [Abstract][Full Text] [Related]
15. A Comparative Analysis Assessing Growth Dynamics of Locally Isolated Chlorella sorokiniana and Chlorella vulgaris for Biomass and Lipid Production with Biodiesel Potential. Usman HM; Kamaroddin MF; Sani MH; Malek NANN; Omoregie AI; Zainal A Bioresour Technol; 2024 Jul; 403():130868. PubMed ID: 38782193 [TBL] [Abstract][Full Text] [Related]
16. Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria. Xue L; Shang H; Ma P; Wang X; He X; Niu J; Wu J J Basic Microbiol; 2018 Apr; 58(4):358-367. PubMed ID: 29488634 [TBL] [Abstract][Full Text] [Related]
17. Effects of temperature and substrate concentration on lipid production by Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues (LMBRs). Ma X; Zheng H; Huang H; Liu Y; Ruan R Appl Biochem Biotechnol; 2014 Oct; 174(4):1631-1650. PubMed ID: 25138600 [TBL] [Abstract][Full Text] [Related]
18. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Münkel R; Schmid-Staiger U; Werner A; Hirth T Biotechnol Bioeng; 2013 Nov; 110(11):2882-93. PubMed ID: 23616347 [TBL] [Abstract][Full Text] [Related]
19. Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production. Kandimalla P; Desi S; Vurimindi H Environ Sci Pollut Res Int; 2016 May; 23(10):9345-54. PubMed ID: 26304814 [TBL] [Abstract][Full Text] [Related]
20. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris]. Zheng H; Gao Z; Zhang Q; Huang H; Ji X; Sun H; Dou C Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]