These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

562 related articles for article (PubMed ID: 25218207)

  • 21. Culture of microalgae Chlorella minutissima for biodiesel feedstock production.
    Tang H; Chen M; Garcia ME; Abunasser N; Ng KY; Salley SO
    Biotechnol Bioeng; 2011 Oct; 108(10):2280-7. PubMed ID: 21495011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of nutrient formulations on growth, lipid yield, carbon partitioning and biodiesel quality potential of Botryococcus sp. and Chlorella sp.
    Vishwakarma R; Dhar DW; Saxena S
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7589-7600. PubMed ID: 30659489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of nitrogen regime on microalgal lipid production during mixotrophic growth with glycerol.
    Paranjape K; Leite GB; Hallenbeck PC
    Bioresour Technol; 2016 Aug; 214():778-786. PubMed ID: 27220067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell Growth, Lipid Production and Productivity in Photosynthetic Microalga Chlorella vulgaris under Different Nitrogen Concentrations and Culture Media Replacement.
    Morowvat MH; Ghasemi Y
    Recent Pat Food Nutr Agric; 2018; 9(2):142-151. PubMed ID: 29886843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The culture of Chlorella vulgaris in a recycled supernatant: effects on biomass production and medium quality.
    Hadj-Romdhane F; Zheng X; Jaouen P; Pruvost J; Grizeau D; Croué JP; Bourseau P
    Bioresour Technol; 2013 Mar; 132():285-92. PubMed ID: 23411460
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source.
    Gupta PL; Choi HJ; Pawar RR; Jung SP; Lee SM
    J Environ Manage; 2016 Dec; 184(Pt 3):585-595. PubMed ID: 27789093
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341.
    Li Z; Yuan H; Yang J; Li B
    Bioresour Technol; 2011 Oct; 102(19):9128-34. PubMed ID: 21803576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency.
    Chu FF; Chu PN; Cai PJ; Li WW; Lam PK; Zeng RJ
    Bioresour Technol; 2013 Apr; 134():341-6. PubMed ID: 23517904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of pH control and concentration on microbial oil production from Chlorella vulgaris cultivated in the effluent of a low-cost organic waste fermentation system producing volatile fatty acids.
    Cho HU; Kim YM; Choi YN; Xu X; Shin DY; Park JM
    Bioresour Technol; 2015 May; 184():245-250. PubMed ID: 25280600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.
    Mohammad Mirzaie MA; Kalbasi M; Mousavi SM; Ghobadian B
    Prep Biochem Biotechnol; 2016; 46(2):150-6. PubMed ID: 25807048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris.
    Kim DG; Lee C; Park SM; Choi YE
    Bioresour Technol; 2014 May; 159():240-8. PubMed ID: 24657754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions.
    Liang Y; Sarkany N; Cui Y
    Biotechnol Lett; 2009 Jul; 31(7):1043-9. PubMed ID: 19322523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CO
    Jain D; Ghonse SS; Trivedi T; Fernandes GL; Menezes LD; Damare SR; Mamatha SS; Kumar S; Gupta V
    Bioresour Technol; 2019 Feb; 273():672-676. PubMed ID: 30503579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomass and oil production by Chlorella vulgaris and four other microalgae - Effects of salinity and other factors.
    Luangpipat T; Chisti Y
    J Biotechnol; 2017 Sep; 257():47-57. PubMed ID: 27914890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris.
    Hultberg M; Jönsson HL; Bergstrand KJ; Carlsson AS
    Bioresour Technol; 2014 May; 159():465-7. PubMed ID: 24718357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater.
    Ji Y; Hu W; Li X; Ma G; Song M; Pei H
    Bioresour Technol; 2014; 152():471-6. PubMed ID: 24333623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Orange peel waste-based liquid medium for biodiesel production by oleaginous yeasts.
    Carota E; Petruccioli M; D'Annibale A; Gallo AM; Crognale S
    Appl Microbiol Biotechnol; 2020 May; 104(10):4617-4628. PubMed ID: 32236680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recycling of food waste as nutrients in Chlorella vulgaris cultivation.
    Lau KY; Pleissner D; Lin CSK
    Bioresour Technol; 2014 Oct; 170():144-151. PubMed ID: 25128844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aging forming process of Chlorella vulgaris growing medium and its cultivation inhibition mechanism.
    He X; Yu Y; Zhu Z; Xue M; Li P; Yu R
    Bioprocess Biosyst Eng; 2020 Oct; 43(10):1921-1929. PubMed ID: 32399748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.