These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25218210)

  • 1. Biogas production from spent rose hips (Rosa canina L.): fraction separation, organic loading and co-digestion with N-rich microbial biomass.
    Osojnik Črnivec IG; Muri P; Djinović P; Pintar A
    Bioresour Technol; 2014 Nov; 171():375-83. PubMed ID: 25218210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: recovering a wasted methane potential and enhancing the biogas yield.
    Martín-González L; Colturato LF; Font X; Vicent T
    Waste Manag; 2010 Oct; 30(10):1854-9. PubMed ID: 20400285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.
    Nges IA; Escobar F; Fu X; Björnsson L
    Waste Manag; 2012 Jan; 32(1):53-9. PubMed ID: 21975301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased biogas production in a wastewater treatment plant by anaerobic co-digestion of fruit and vegetable waste and sewer sludge - a full scale study.
    Park ND; Thring RW; Garton RP; Rutherford MP; Helle SS
    Water Sci Technol; 2011; 64(9):1851-6. PubMed ID: 22020478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogas production from water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nitrogen concentrations.
    Jayaweera MW; Dilhani JA; Kularatne RK; Wijeyekoon SL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jun; 42(7):925-32. PubMed ID: 17558773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste.
    Chen X; Yan W; Sheng K; Sanati M
    Bioresour Technol; 2014 Feb; 154():215-21. PubMed ID: 24398149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced methane production from pig manure anaerobic digestion using fish and biodiesel wastes as co-substrates.
    Regueiro L; Carballa M; Alvarez JA; Lema JM
    Bioresour Technol; 2012 Nov; 123():507-13. PubMed ID: 22940361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state anaerobic co-digestion of hay and soybean processing waste for biogas production.
    Zhu J; Zheng Y; Xu F; Li Y
    Bioresour Technol; 2014 Feb; 154():240-7. PubMed ID: 24398152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: effect of organic loading rate.
    Liu X; Wang W; Shi Y; Zheng L; Gao X; Qiao W; Zhou Y
    Waste Manag; 2012 Nov; 32(11):2056-60. PubMed ID: 22459511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of biogas generation potential as a renewable energy source from supermarket wastes.
    Alkanok G; Demirel B; Onay TT
    Waste Manag; 2014 Jan; 34(1):134-40. PubMed ID: 24120116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the initial acidification step on biogas production and composition.
    Dirnena I; Dimanta I; Gruduls A; Kleperis J; Elferts D; Nikolajeva V
    Biotechnol Appl Biochem; 2014; 61(3):316-21. PubMed ID: 24606319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions.
    Li Y; Zhang R; Chen C; Liu G; He Y; Liu X
    Bioresour Technol; 2013 Dec; 149():406-12. PubMed ID: 24135565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase.
    Shen F; Yuan H; Pang Y; Chen S; Zhu B; Zou D; Liu Y; Ma J; Yu L; Li X
    Bioresour Technol; 2013 Sep; 144():80-5. PubMed ID: 23867528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biotransformation of brewer's spent grain into biogas by anaerobic microbial communities.
    Malakhova DV; Egorova MA; Prokudina LI; Netrusov AI; Tsavkelova EA
    World J Microbiol Biotechnol; 2015 Dec; 31(12):2015-23. PubMed ID: 26399858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid state anaerobic co-digestion of yard waste and food waste for biogas production.
    Brown D; Li Y
    Bioresour Technol; 2013 Jan; 127():275-80. PubMed ID: 23131652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state co-digestion of expired dog food and corn stover for methane production.
    Xu F; Li Y
    Bioresour Technol; 2012 Aug; 118():219-26. PubMed ID: 22705527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme research and applications in biotechnological intensification of biogas production.
    Parawira W
    Crit Rev Biotechnol; 2012 Jun; 32(2):172-86. PubMed ID: 21851320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced methane production from Taihu Lake blue algae by anaerobic co-digestion with corn straw in continuous feed digesters.
    Zhong W; Chi L; Luo Y; Zhang Z; Zhang Z; Wu WM
    Bioresour Technol; 2013 Apr; 134():264-70. PubMed ID: 23506978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of biofilm formation during anaerobic digestion of organic waste.
    Langer S; Schropp D; Bengelsdorf FR; Othman M; Kazda M
    Anaerobe; 2014 Oct; 29():44-51. PubMed ID: 24342346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.