BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25218260)

  • 21. Stereoselective formation of mono- and dihydroxylated polychlorinated biphenyls by rat cytochrome P450 2B1.
    Lu Z; Kania-Korwel I; Lehmler HJ; Wong CS
    Environ Sci Technol; 2013; 47(21):12184-92. PubMed ID: 24060104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of a novel hydroxylated metabolite of 2,2',3,5',6-pentachlorobiphenyl formed in whole poplar plants.
    Ma C; Zhai G; Wu H; Kania-Korwel I; Lehmler HJ; Schnoor JL
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2089-98. PubMed ID: 26676542
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reflection of Stereoselectivity during the Uptake and Acropetal Translocation of Chiral PCBs in Plants in the Presence of Copper.
    Wang S; Luo C; Zhang D; Wang Y; Song M; Yu Z; Wang Y; Zhang G
    Environ Sci Technol; 2017 Dec; 51(23):13834-13841. PubMed ID: 29096434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of plant age on PCB accumulation by Cucurbita pepo ssp. pepo.
    Low JE; Whitfield Aslund ML; Rutter A; Zeeb BA
    J Environ Qual; 2010; 39(1):245-50. PubMed ID: 20048312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chiral PCB signatures in air and soil: implications for atmospheric source apportionment.
    Robson M; Harrad S
    Environ Sci Technol; 2004 Mar; 38(6):1662-6. PubMed ID: 15074672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polychlorinated biphenyls (PCBs) in San Francisco Bay.
    Davis JA; Hetzel F; Oram JJ; McKee LJ
    Environ Res; 2007 Sep; 105(1):67-86. PubMed ID: 17451673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Species-Specific Prey Uptake and Biotransformation of Chiral Polychlorinated Biphenyls (PCBs) in Riparian and Aquatic Food Webs.
    Zheng X; Wu X; Lu R; Cao X; Mai BX
    Environ Sci Technol; 2023 Dec; 57(48):20282-20291. PubMed ID: 37966724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enantiomer separation of polychlorinated biphenyl atropisomers and polychlorinated biphenyl retention behavior on modified cyclodextrin capillary gas chromatography columns.
    Wong CS; Garrison AW
    J Chromatogr A; 2000 Jan; 866(2):213-20. PubMed ID: 10670811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biotransformation of polychlorinated biphenyls (PCBs) and bioformation of hydroxylated PCBs in fish.
    Buckman AH; Wong CS; Chow EA; Brown SB; Solomon KR; Fisk AT
    Aquat Toxicol; 2006 Jun; 78(2):176-85. PubMed ID: 16621064
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gas chromatographic analysis with chiral cyclodextrin phases reveals the enantioselective formation of hydroxylated polychlorinated biphenyls by rat liver microsomes.
    Kania-Korwel I; Duffel MW; Lehmler HJ
    Environ Sci Technol; 2011 Nov; 45(22):9590-6. PubMed ID: 21966948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Uptake, translocation and metabolism of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in maize (Zea mays L.).
    Wang S; Zhang S; Huang H; Zhao M; Lv J
    Chemosphere; 2011 Oct; 85(3):379-85. PubMed ID: 21798573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accumulation and depuration of polychlorinated biphenyls from field-collected sediment in three freshwater organisms.
    Van Geest JL; Mackay D; Poirier DG; Sibley PK; Solomon KR
    Environ Sci Technol; 2011 Aug; 45(16):7011-8. PubMed ID: 21740035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phytoremediation of polychlorinated biphenyl (PCB)-contaminated sediment: a greenhouse feasibility study.
    Smith KE; Schwab AP; Banks MK
    J Environ Qual; 2007; 36(1):239-44. PubMed ID: 17215232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uptake and translocation of lesser-chlorinated polychlorinated biphenyls (PCBs) in whole hybrid poplar plants after hydroponic exposure.
    Liu J; Schnoor JL
    Chemosphere; 2008 Nov; 73(10):1608-16. PubMed ID: 18793792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing plant uptake of polychlorinated biphenyls and cadmium using tea saponin.
    Xia H; Chi X; Yan Z; Cheng W
    Bioresour Technol; 2009 Oct; 100(20):4649-53. PubMed ID: 19477119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial degradation of polychlorinated biphenyls: biochemical and molecular features.
    Furukawa K; Fujihara H
    J Biosci Bioeng; 2008 May; 105(5):433-49. PubMed ID: 18558332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls.
    Wu L; Li Z; Han C; Liu L; Teng Y; Sun X; Pan C; Huang Y; Luo Y; Christie P
    Int J Phytoremediation; 2012 Jul; 14(6):570-84. PubMed ID: 22908627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of citric acid amendments on the availability of weathered PCBs to plant and earthworm species.
    White JC; Parrish ZD; Isleyen M; Gent MP; Iannucci-Berger W; Eitzer BD; Kelsey JW; Mattina MI
    Int J Phytoremediation; 2006; 8(1):63-79. PubMed ID: 16615308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Factors affecting phase I stereoselective biotransformation of chiral polychlorinated biphenyls by rat cytochrome P-450 2B1 isozyme.
    Lu Z; Wong CS
    Environ Sci Technol; 2011 Oct; 45(19):8298-305. PubMed ID: 21863805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phytoextraction and uptake patterns of weathered polychlorinated biphenyl-contaminated soils using three perennial weed species.
    Ficko SA; Rutter A; Zeeb BA
    J Environ Qual; 2011; 40(6):1870-7. PubMed ID: 22031570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.