These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 25218361)
1. Adaptation for survival: phenotype and transcriptome response of CHO cells to elevated stress induced by agitation and sparging. Sieck JB; Budach WE; Suemeghy Z; Leist C; Villiger TK; Morbidelli M; Soos M J Biotechnol; 2014 Nov; 189():94-103. PubMed ID: 25218361 [TBL] [Abstract][Full Text] [Related]
2. Development of a Scale-Down Model of hydrodynamic stress to study the performance of an industrial CHO cell line under simulated production scale bioreactor conditions. Sieck JB; Cordes T; Budach WE; Rhiel MH; Suemeghy Z; Leist C; Villiger TK; Morbidelli M; Soos M J Biotechnol; 2013 Mar; 164(1):41-9. PubMed ID: 23228731 [TBL] [Abstract][Full Text] [Related]
3. Characterization of cellular responses and cell lysis to elevated hydrodynamic stress from benchtop perfusion bioreactors. Zhang W; Ran Q; Zhao L; Ye Q; Tan WS Biotechnol J; 2024 Mar; 19(3):e2400063. PubMed ID: 38528344 [TBL] [Abstract][Full Text] [Related]
4. In silico model-based characterization of metabolic response to harsh sparging stress in fed-batch CHO cell cultures. Hong JK; Yeo HC; Lakshmanan M; Han SH; Cha HM; Han M; Lee DY J Biotechnol; 2020 Jan; 308():10-20. PubMed ID: 31756358 [TBL] [Abstract][Full Text] [Related]
5. Minimizing hydrodynamic stress in mammalian cell culture through the lobed Taylor-Couette bioreactor. Sorg R; Tanzeglock T; Soos M; Morbidelli M; Périlleux A; Solacroup T; Broly H Biotechnol J; 2011 Dec; 6(12):1504-15. PubMed ID: 21766459 [TBL] [Abstract][Full Text] [Related]
6. Determination of the maximum operating range of hydrodynamic stress in mammalian cell culture. Neunstoecklin B; Stettler M; Solacroup T; Broly H; Morbidelli M; Soos M J Biotechnol; 2015 Jan; 194():100-9. PubMed ID: 25529344 [TBL] [Abstract][Full Text] [Related]
7. Air sparging for prevention of antibody disulfide bond reduction in harvested CHO cell culture fluid. Mun M; Khoo S; Do Minh A; Dvornicky J; Trexler-Schmidt M; Kao YH; Laird MW Biotechnol Bioeng; 2015 Apr; 112(4):734-42. PubMed ID: 25384896 [TBL] [Abstract][Full Text] [Related]
8. Physiological responses of CHO cells to repetitive hydrodynamic stress. Godoy-Silva R; Chalmers JJ; Casnocha SA; Bass LA; Ma N Biotechnol Bioeng; 2009 Aug; 103(6):1103-17. PubMed ID: 19405151 [TBL] [Abstract][Full Text] [Related]
9. Pilot-scale verification of maximum tolerable hydrodynamic stress for mammalian cell culture. Neunstoecklin B; Villiger TK; Lucas E; Stettler M; Broly H; Morbidelli M; Soos M Appl Microbiol Biotechnol; 2016 Apr; 100(8):3489-98. PubMed ID: 26637424 [TBL] [Abstract][Full Text] [Related]
10. NS0 cell damage by high gas velocity sparging in protein-free and cholesterol-free cultures. Zhu Y; Cuenca JV; Zhou W; Varma A Biotechnol Bioeng; 2008 Nov; 101(4):751-60. PubMed ID: 18814288 [TBL] [Abstract][Full Text] [Related]
12. Batch, fed-batch, and microcarrier cultures with CHO cell lines in a pressure-cycle driven miniaturized bioreactor. Kim BJ; Zhao T; Young L; Zhou P; Shuler ML Biotechnol Bioeng; 2012 Jan; 109(1):137-45. PubMed ID: 21965160 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic assessment of mechanical cell damage by extensional stress. Bae YB; Jang HK; Shin TH; Phukan G; Tran TT; Lee G; Hwang WR; Kim JM Lab Chip; 2016 Jan; 16(1):96-103. PubMed ID: 26621113 [TBL] [Abstract][Full Text] [Related]
14. Hypoxia influences protein transport and epigenetic repression of CHO cell cultures in shake flasks. Qian Y; Xing Z; Lee S; Mackin NA; He A; Kayne PS; He Q; Qian NX; Li ZJ Biotechnol J; 2014 Nov; 9(11):1413-24. PubMed ID: 25271019 [TBL] [Abstract][Full Text] [Related]
15. Neural-network-based identification of tissue-type plasminogen activator protein production and glycosylation in CHO cell culture under shear environment. Senger RS; Karim MN Biotechnol Prog; 2003; 19(6):1828-36. PubMed ID: 14656163 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional profiling of phenotypically different Epo-Fc expressing CHO clones by cross-species microarray analysis. Trummer E; Ernst W; Hesse F; Schriebl K; Lattenmayer C; Kunert R; Vorauer-Uhl K; Katinger H; Müller D Biotechnol J; 2008 Jul; 3(7):924-37. PubMed ID: 18481264 [TBL] [Abstract][Full Text] [Related]
17. Impact of aeration strategy on CHO cell performance during antibody production. Velez-Suberbie ML; Tarrant RD; Tait AS; Spencer DI; Bracewell DG Biotechnol Prog; 2013; 29(1):116-26. PubMed ID: 23074084 [TBL] [Abstract][Full Text] [Related]
18. Effect of shear stress on intrinsic CHO culture state and glycosylation of recombinant tissue-type plasminogen activator protein. Senger RS; Karim MN Biotechnol Prog; 2003; 19(4):1199-209. PubMed ID: 12892482 [TBL] [Abstract][Full Text] [Related]
19. Translatome analysis of CHO cells to identify key growth genes. Courtes FC; Lin J; Lim HL; Ng SW; Wong NS; Koh G; Vardy L; Yap MG; Loo B; Lee DY J Biotechnol; 2013 Sep; 167(3):215-24. PubMed ID: 23876478 [TBL] [Abstract][Full Text] [Related]
20. Transcriptomics as a tool for assessing the scalability of mammalian cell perfusion systems. Jayapal KP; Goudar CT Adv Biochem Eng Biotechnol; 2014; 139():227-43. PubMed ID: 23949697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]