BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25218641)

  • 1. Biaxial mechanical properties of swine uterosacral and cardinal ligaments.
    Becker WR; De Vita R
    Biomech Model Mechanobiol; 2015 Jun; 14(3):549-60. PubMed ID: 25218641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of repeated biaxial loads on the creep properties of cardinal ligaments.
    Baah-Dwomoh A; De Vita R
    J Mech Behav Biomed Mater; 2017 Oct; 74():128-141. PubMed ID: 28599153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Analysis of the Uterosacral Ligament: Swine vs. Human.
    Baah-Dwomoh A; Alperin M; Cook M; De Vita R
    Ann Biomed Eng; 2018 Dec; 46(12):2036-2047. PubMed ID: 30051246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-structural and Biaxial Creep Properties of the Swine Uterosacral-Cardinal Ligament Complex.
    Tan T; Cholewa NM; Case SW; De Vita R
    Ann Biomed Eng; 2016 Nov; 44(11):3225-3237. PubMed ID: 27256362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histo-mechanical properties of the swine cardinal and uterosacral ligaments.
    Tan T; Davis FM; Gruber DD; Massengill JC; Robertson JL; De Vita R
    J Mech Behav Biomed Mater; 2015 Feb; 42():129-37. PubMed ID: 25482216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-plane and out-of-plane deformations of gilt utero-sacral ligaments.
    Donaldson K; Thomas J; Zhu Y; Clark-Deener S; Alperin M; De Vita R
    J Mech Behav Biomed Mater; 2022 Jul; 131():105249. PubMed ID: 35526346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Biaxial Biomechanical Properties of Post-menopausal Human Prolapsed and Non-prolapsed Uterosacral Ligament.
    Danso EK; Schuster JD; Johnson I; Harville EW; Buckner LR; Desrosiers L; Knoepp LR; Miller KS
    Sci Rep; 2020 Apr; 10(1):7386. PubMed ID: 32355180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and Characterization of the Murine Uterosacral Ligaments and Pelvic Floor Organs.
    Bastías CS; Savard LM; Eckstein KN; Connell K; Luetkemeyer CM; Ferguson VL; Calve S
    J Vis Exp; 2023 Mar; (193):. PubMed ID: 36939242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nonlinear constitutive model for stress relaxation in ligaments and tendons.
    Davis FM; De Vita R
    Ann Biomed Eng; 2012 Dec; 40(12):2541-50. PubMed ID: 22648576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-dimensional constitutive model for the stress relaxation of articular ligaments.
    Davis FM; De Vita R
    Biomech Model Mechanobiol; 2014 Jun; 13(3):653-63. PubMed ID: 23990018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanics of Uterosacral Ligaments: Current Knowledge, Existing Gaps, and Future Directions.
    Donaldson K; Huntington A; De Vita R
    Ann Biomed Eng; 2021 Aug; 49(8):1788-1804. PubMed ID: 33754254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From molecular to macro: the key role of the apical ligaments in uterovaginal support.
    Kieserman-Shmokler C; Swenson CW; Chen L; Desmond LM; Ashton-Miller JA; DeLancey JO
    Am J Obstet Gynecol; 2020 May; 222(5):427-436. PubMed ID: 31639371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Female pelvic floor biomechanics: bridging the gap.
    Easley DC; Abramowitch SD; Moalli PA
    Curr Opin Urol; 2017 May; 27(3):262-267. PubMed ID: 28267057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human cervical spine ligaments exhibit fully nonlinear viscoelastic behavior.
    Troyer KL; Puttlitz CM
    Acta Biomater; 2011 Feb; 7(2):700-9. PubMed ID: 20831909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strength of round and uterosacral ligaments: a biomechanical study.
    Martins P; Silva-Filho AL; Fonseca AM; Santos A; Santos L; Mascarenhas T; Jorge RM; Ferreira AM
    Arch Gynecol Obstet; 2013 Feb; 287(2):313-8. PubMed ID: 23001414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ex Vivo Uniaxial Tensile Properties of Rat Uterosacral Ligaments.
    Donaldson K; De Vita R
    Ann Biomed Eng; 2023 Apr; 51(4):702-714. PubMed ID: 36652028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of pelvic soft tissue of young women and impact of aging.
    Chantereau P; Brieu M; Kammal M; Farthmann J; Gabriel B; Cosson M
    Int Urogynecol J; 2014 Nov; 25(11):1547-53. PubMed ID: 25007897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatomy and histology of apical support: a literature review concerning cardinal and uterosacral ligaments.
    Ramanah R; Berger MB; Parratte BM; DeLancey JO
    Int Urogynecol J; 2012 Nov; 23(11):1483-94. PubMed ID: 22618209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pelvic nerve plexus trauma at radical hysterectomy and simple hysterectomy: the nerve content of the uterine supporting ligaments.
    Butler-Manuel SA; Buttery LD; A'Hern RP; Polak JM; Barton DP
    Cancer; 2000 Aug; 89(4):834-41. PubMed ID: 10951347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mechanical characteristics of the human bladder wall and application of the results in a finite elements model to study the pelvic floor].
    Marino G; Bignardi C; Pacca M; Ravarino N; Mosso L; Motta M
    Minerva Urol Nefrol; 2006 Jun; 58(2):213-9. PubMed ID: 16767076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.