These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 25218768)

  • 41. Flow effects on phenol degradation and sonoluminescence at different ultrasonic frequencies.
    Wood RJ; Vévert C; Lee J; Bussemaker MJ
    Ultrason Sonochem; 2020 May; 63():104892. PubMed ID: 31945575
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental and theoretical investigations on sonoluminescence under dual frequency conditions.
    Kanthale PM; Brotchie A; Ashokkumar M; Grieser F
    Ultrason Sonochem; 2008 Apr; 15(4):629-635. PubMed ID: 17931950
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nonequilibrium vibrational excitation of OH radicals generated during multibubble cavitation in water.
    Ndiaye AA; Pflieger R; Siboulet B; Molina J; Dufrêche JF; Nikitenko SI
    J Phys Chem A; 2012 May; 116(20):4860-7. PubMed ID: 22559729
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of alcohols on the initial growth of multibubble sonoluminescence.
    Lee J; Ashokkumar M; Kentish S; Grieser F
    J Phys Chem B; 2006 Aug; 110(34):17282-5. PubMed ID: 16928027
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A fundamental study on the degradation of paracetamol under single- and dual-frequency ultrasound.
    Zare M; Alfonso-Muniozguren P; Bussemaker MJ; Sears P; Serna-Galvis EA; Torres-Palma RA; Lee J
    Ultrason Sonochem; 2023 Mar; 94():106320. PubMed ID: 36780809
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sonoluminescence from ultra-high temperature and pressure cavitation produced by a narrow water jet.
    Yoshimura T; Nishijima N; Hashimoto D; Ijiri M
    Heliyon; 2021 Aug; 7(8):e07767. PubMed ID: 34430745
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sonoluminescence and sonochemiluminescence from a microreactor.
    Fernandez Rivas D; Ashokkumar M; Leong T; Yasui K; Tuziuti T; Kentish S; Lohse D; Gardeniers HJ
    Ultrason Sonochem; 2012 Nov; 19(6):1252-9. PubMed ID: 22613621
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Contemporary review on nature of sonoluminescence and sonochemical reactions.
    Margulis MA; Margulis IM
    Ultrason Sonochem; 2002 Jan; 9(1):1-10. PubMed ID: 11602989
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid.
    Thiemann A; Holsteyns F; Cairós C; Mettin R
    Ultrason Sonochem; 2017 Jan; 34():663-676. PubMed ID: 27773293
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Na emission and bubble instability in single-bubble sonoluminescence.
    Choi PK; Takumori K; Lee HB
    Ultrason Sonochem; 2017 Sep; 38():154-160. PubMed ID: 28633814
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sonoluminescence quenching and cavitation bubble temperature measurements in an ionic liquid.
    Kanthale PM; Brotchie A; Grieser F; Ashokkumar M
    Ultrason Sonochem; 2013 Jan; 20(1):47-51. PubMed ID: 22717325
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Second mode of recycling together with period doubling links single-bubble and multibubble sonoluminescence.
    Dam JS; Levinsen MT
    Phys Rev Lett; 2005 May; 94(17):174301. PubMed ID: 15904298
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of noble gases on sonoluminescence temperatures during multibubble cavitation.
    Didenko YT; McNamara WB; Suslick KS
    Phys Rev Lett; 2000 Jan; 84(4):777-80. PubMed ID: 11017370
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Near-infrared emissions in single-bubble and multibubble sonoluminescence.
    Matula TJ; Guan J; Crum LA; Robinson AL; Burgess LW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026310. PubMed ID: 11497702
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field.
    Lee J; Ashokkumar M; Kentish S; Grieser F
    J Am Chem Soc; 2005 Dec; 127(48):16810-1. PubMed ID: 16316227
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of acoustic cavitation bubbles in different sound fields.
    Brotchie A; Grieser F; Ashokkumar M
    J Phys Chem B; 2010 Sep; 114(34):11010-6. PubMed ID: 20698516
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation.
    Didenko YT; Suslick KS
    Nature; 2002 Jul; 418(6896):394-7. PubMed ID: 12140551
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The characterization of acoustic cavitation bubbles - an overview.
    Ashokkumar M
    Ultrason Sonochem; 2011 Jul; 18(4):864-72. PubMed ID: 21172736
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spatial separation of cavitating bubble populations: the nanodroplet injection model.
    Xu H; Eddingsaas NC; Suslick KS
    J Am Chem Soc; 2009 May; 131(17):6060-1. PubMed ID: 19400590
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiple observations of cavitation cluster dynamics close to an ultrasonic horn tip.
    Birkin PR; Offin DG; Vian CJ; Leighton TG
    J Acoust Soc Am; 2011 Nov; 130(5):3379-88. PubMed ID: 22088011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.