These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 25218769)
1. Use of 24 kHz ultrasound to improve sulfate precipitation from wastewater. Davies LA; Dargue A; Dean JR; Deary ME Ultrason Sonochem; 2015 Mar; 23():424-31. PubMed ID: 25218769 [TBL] [Abstract][Full Text] [Related]
2. Sulfate removal from waste chemicals by precipitation. Benatti CT; Tavares CR; Lenzi E J Environ Manage; 2009 Jan; 90(1):504-11. PubMed ID: 18222593 [TBL] [Abstract][Full Text] [Related]
3. Removal of sulfate from wet FGD wastewater by co-precipitation with calcium hydroxide and sodium aluminate. Yu J; Lu J; Kang Y Water Sci Technol; 2018 Mar; 77(5-6):1336-1345. PubMed ID: 29528321 [TBL] [Abstract][Full Text] [Related]
4. Lead removal and toxicity reduction from industrial wastewater through biological sulfate reduction process. Teekayuttasakul P; Annachhatre AP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Oct; 43(12):1424-30. PubMed ID: 18780220 [TBL] [Abstract][Full Text] [Related]
5. Precipitation of heavy metals from coal ash leachate using biogenic hydrogen sulfide generated from FGD gypsum. Jayaranjan ML; Annachhatre AP Water Sci Technol; 2013; 67(2):311-8. PubMed ID: 23168629 [TBL] [Abstract][Full Text] [Related]
6. Removal of sulfate from high-strength wastewater by crystallisation. Tait S; Clarke WP; Keller J; Batstone DJ Water Res; 2009 Feb; 43(3):762-72. PubMed ID: 19059623 [TBL] [Abstract][Full Text] [Related]
7. Lead removal through biological sulfate reduction process. Hien Hoa TT; Liamleam W; Annachhatre AP Bioresour Technol; 2007 Sep; 98(13):2538-48. PubMed ID: 17174088 [TBL] [Abstract][Full Text] [Related]
8. Treating industrial discharges by thermophilic sulfate reduction process with molasses as electron donor. Liamleam W; Annachhatre AP Environ Technol; 2007 Jun; 28(6):639-47. PubMed ID: 17624104 [TBL] [Abstract][Full Text] [Related]
9. Biological sulfate removal from gypsum contaminated construction and demolition debris. Kijjanapanich P; Annachhatre AP; Esposito G; van Hullebusch ED; Lens PN J Environ Manage; 2013 Dec; 131():82-91. PubMed ID: 24149113 [TBL] [Abstract][Full Text] [Related]
10. Adsorption of arsenate onto ferrihydrite from aqueous solution: influence of media (sulfate vs nitrate), added gypsum, and pH alteration. Jia Y; Demopoulos GP Environ Sci Technol; 2005 Dec; 39(24):9523-7. PubMed ID: 16475331 [TBL] [Abstract][Full Text] [Related]
11. Removal of sulfide, sulfate and sulfite ions by electro coagulation. Murugananthan M; Raju GB; Prabhakar S J Hazard Mater; 2004 Jun; 109(1-3):37-44. PubMed ID: 15177743 [TBL] [Abstract][Full Text] [Related]
12. Removal of high concentration of sulfate from pigment industry effluent by chemical precipitation using barium chloride: RSM and ANN modeling approach. Navamani Kartic D; Aditya Narayana BC; Arivazhagan M J Environ Manage; 2018 Jan; 206():69-76. PubMed ID: 29059573 [TBL] [Abstract][Full Text] [Related]
13. Sulfate removal from wastewater using ettringite precipitation: Magnesium ion inhibition and process optimization. Dou W; Zhou Z; Jiang LM; Jiang A; Huang R; Tian X; Zhang W; Chen D J Environ Manage; 2017 Jul; 196():518-526. PubMed ID: 28347970 [TBL] [Abstract][Full Text] [Related]
14. The effect of magnesium on partial sulphate removal from mine water as gypsum. Tolonen ET; Rämö J; Lassi U J Environ Manage; 2015 Aug; 159():143-146. PubMed ID: 26067895 [TBL] [Abstract][Full Text] [Related]
15. Differential Precipitation of Mg(OH) Ziegenheim S; Szabados M; Kónya Z; Kukovecz Á; Pálinkó I; Sipos P Molecules; 2020 Oct; 25(21):. PubMed ID: 33138128 [TBL] [Abstract][Full Text] [Related]
16. Simulation of pulp mill wastewater recycling after tertiary treatment. Fontanier V; Albet J; Baig S; Molinier J Environ Technol; 2005 Dec; 26(12):1335-44. PubMed ID: 16372568 [TBL] [Abstract][Full Text] [Related]
17. Sonication of pulp and paper effluent. Shaw LE; Lee D Ultrason Sonochem; 2009 Mar; 16(3):321-4. PubMed ID: 19058990 [TBL] [Abstract][Full Text] [Related]
18. Anaerobic digestion of wastewater rich in sulfate and sulfide: effects of metallic waste addition and micro-aeration on process performance and methane production. Montalvo S; Huiliñir C; Borja R; Castillo A; Pereda I J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(10):1035-1043. PubMed ID: 31188049 [TBL] [Abstract][Full Text] [Related]
19. Recovering chemical sludge from the zero liquid discharge system of flue gas desulfurization wastewater as flame retardants by a stepwise precipitation process. Guo J; Zhou Z; Ming Q; Sun D; Li F; Xi J; Wu Q; Yang J; Xia Q; Zhao X J Hazard Mater; 2021 Sep; 417():126054. PubMed ID: 33992018 [TBL] [Abstract][Full Text] [Related]
20. Performance of sulfidogenic anaerobic baffled reactor (ABR) treating acidic and zinc-containing wastewater. Bayrakdar A; Sahinkaya E; Gungor M; Uyanik S; Atasoy AD Bioresour Technol; 2009 Oct; 100(19):4354-60. PubMed ID: 19428238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]