These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 25218945)

  • 1. DNA double strand break responses and chromatin alterations within the aging cell.
    Klement K; Goodarzi AA
    Exp Cell Res; 2014 Nov; 329(1):42-52. PubMed ID: 25218945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of DNA-dependent protein kinase induces accelerated senescence in irradiated human cancer cells.
    Azad A; Jackson S; Cullinane C; Natoli A; Neilsen PM; Callen DF; Maira SM; Hackl W; McArthur GA; Solomon B
    Mol Cancer Res; 2011 Dec; 9(12):1696-707. PubMed ID: 22009179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Irreversible cellular senescence induced by prolonged exposure to H2O2 involves DNA-damage-and-repair genes and telomere shortening.
    Duan J; Duan J; Zhang Z; Tong T
    Int J Biochem Cell Biol; 2005 Jul; 37(7):1407-20. PubMed ID: 15833273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rejuvenation of senescent cells-the road to postponing human aging and age-related disease?
    Sikora E
    Exp Gerontol; 2013 Jul; 48(7):661-6. PubMed ID: 23064316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation in the nucleotide pool, the DNA damage response and cellular senescence: Defective bricks build a defective house.
    Rai P
    Mutat Res; 2010 Nov; 703(1):71-81. PubMed ID: 20673809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer, aging and cellular senescence.
    Campisi J
    In Vivo; 2000; 14(1):183-8. PubMed ID: 10757076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Senescence: a telomeric limit to immortality or a cellular response to physiologic stresses?].
    Gire V
    Med Sci (Paris); 2005 May; 21(5):491-7. PubMed ID: 15885198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inducing cellular senescence using defined genetic elements.
    Nakagawa H; Opitz OG
    Methods Mol Biol; 2007; 371():167-78. PubMed ID: 17634581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin modifications and DNA double-strand breaks: the current state of play.
    Karagiannis TC; El-Osta A
    Leukemia; 2007 Feb; 21(2):195-200. PubMed ID: 17151702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p19INK4d is involved in the cellular senescence mechanism contributing to heterochromatin formation.
    Sonzogni SV; Ogara MF; Belluscio LM; Castillo DS; Scassa ME; Cánepa ET
    Biochim Biophys Acta; 2014 Jul; 1840(7):2171-83. PubMed ID: 24667034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of linker histone H1 in cellular senescence.
    Funayama R; Saito M; Tanobe H; Ishikawa F
    J Cell Biol; 2006 Dec; 175(6):869-80. PubMed ID: 17158953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATM-deficient human fibroblast cells are resistant to low levels of DNA double-strand break induced apoptosis and subsequently undergo drug-induced premature senescence.
    Park J; Jo YH; Cho CH; Choe W; Kang I; Baik HH; Yoon KS
    Biochem Biophys Res Commun; 2013 Jan; 430(1):429-35. PubMed ID: 23178571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rb protein is essential to the senescence-associated heterochromatic foci formation induced by HMGA2 in primary WI38 cells.
    Shi X; Tian B; Liu L; Gao Y; Ma C; Mwichie N; Ma W; Han L; Huang B; Lu J; Zhang Y
    J Genet Genomics; 2013 Aug; 40(8):391-8. PubMed ID: 23969248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncoupling the senescent phenotype from telomere shortening in hydrogen peroxide-treated fibroblasts.
    Chen QM; Prowse KR; Tu VC; Purdom S; Linskens MH
    Exp Cell Res; 2001 May; 265(2):294-303. PubMed ID: 11302695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SV40 oncoproteins enhance asbestos-induced DNA double-strand breaks and abrogate senescence in murine mesothelial cells.
    Pietruska JR; Kane AB
    Cancer Res; 2007 Apr; 67(8):3637-45. PubMed ID: 17440075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA double strand break repair, aging and the chromatin connection.
    Gorbunova V; Seluanov A
    Mutat Res; 2016 Jun; 788():2-6. PubMed ID: 26923716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase.
    Vaziri H; West MD; Allsopp RC; Davison TS; Wu YS; Arrowsmith CH; Poirier GG; Benchimol S
    EMBO J; 1997 Oct; 16(19):6018-33. PubMed ID: 9312059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of chromatin reorganization in the process of cellular senescence.
    Tominaga K; Pereira-Smith OM
    Curr Drug Targets; 2012 Dec; 13(13):1593-602. PubMed ID: 22998188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneity in premature senescence by oxidative stress correlates with differential DNA damage during the cell cycle.
    Chen JH; Ozanne SE; Hales CN
    DNA Repair (Amst); 2005 Sep; 4(10):1140-8. PubMed ID: 16006199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of DNA polymerase μ affects the kinetics of DNA double-strand break repair and impacts on cellular senescence.
    Chayot R; Danckaert A; Montagne B; Ricchetti M
    DNA Repair (Amst); 2010 Nov; 9(11):1187-99. PubMed ID: 20947452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.