BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 25218945)

  • 1. DNA double strand break responses and chromatin alterations within the aging cell.
    Klement K; Goodarzi AA
    Exp Cell Res; 2014 Nov; 329(1):42-52. PubMed ID: 25218945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Key elements of cellular senescence involve transcriptional repression of mitotic and DNA repair genes through the p53-p16/RB-E2F-DREAM complex.
    Kandhaya-Pillai R; Miro-Mur F; Alijotas-Reig J; Tchkonia T; Schwartz S; Kirkland JL; Oshima J
    Aging (Albany NY); 2023 May; 15(10):4012-4034. PubMed ID: 37219418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of chromatin on double-strand break repair: Imaging tools and discoveries.
    van Bueren MAE; Janssen A
    DNA Repair (Amst); 2024 Jan; 133():103592. PubMed ID: 37976899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alteration in the chromatin landscape during the DNA damage response: Continuous rotation of the gear driving cellular senescence and aging.
    Qian J; Zhou X; Tanaka K; Takahashi A
    DNA Repair (Amst); 2023 Nov; 131():103572. PubMed ID: 37742405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Old cells, new tricks: chromatin structure in senescence.
    Parry AJ; Narita M
    Mamm Genome; 2016 Aug; 27(7-8):320-31. PubMed ID: 27021489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence.
    Zhang X; Liu X; Du Z; Wei L; Fang H; Dong Q; Niu J; Li Y; Gao J; Zhang MQ; Xie W; Wang X
    Genome Res; 2021 Jul; 31(7):1121-1135. PubMed ID: 34140314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-scale cellular imaging of DNA double strand break repair.
    Heemskerk T; van de Kamp G; Essers J; Kanaar R; Paul MW
    DNA Repair (Amst); 2023 Nov; 131():103570. PubMed ID: 37734176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic 3D genome reorganization during senescence: defining cell states through chromatin.
    Shaban HA; Gasser SM
    Cell Death Differ; 2023 Aug; ():. PubMed ID: 37596440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond SAHF: An integrative view of chromatin compartmentalization during senescence.
    Olan I; Handa T; Narita M
    Curr Opin Cell Biol; 2023 Aug; 83():102206. PubMed ID: 37451177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of double-strand DNA break repair exacerbates vascular aging.
    Bloom SI; Tucker JR; Machin DR; Abdeahad H; Adeyemo AO; Thomas TG; Bramwell RC; Lesniewski LA; Donato AJ
    Aging (Albany NY); 2023 Oct; 15(19):9913-9947. PubMed ID: 37787989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging role of cellular senescence in normal lung development and perinatal lung injury.
    Dennery PA; Yao H
    Chin Med J Pulm Crit Care Med; 2024 Mar; 2(1):10-16. PubMed ID: 38567372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of DNA polymerase β induces cellular senescence.
    Ahmed AA; Smoczer C; Pace B; Patterson D; Cress Cabelof D
    Environ Mol Mutagen; 2018 Aug; 59(7):603-612. PubMed ID: 29968395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of viral and bacterial infections to senescence and immunosenescence.
    Reyes A; Ortiz G; Duarte LF; Fernández C; Hernández-Armengol R; Palacios PA; Prado Y; Andrade CA; Rodriguez-Guilarte L; Kalergis AM; Simon F; Carreño LJ; Riedel CA; Cáceres M; González PA
    Front Cell Infect Microbiol; 2023; 13():1229098. PubMed ID: 37753486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ReiNF4rcing repair pathway choice during cell cycle.
    Delabaere L; Chiolo I
    Cell Cycle; 2016 May; 15(9):1182-3. PubMed ID: 27096711
    [No Abstract]   [Full Text] [Related]  

  • 15. Compartmentalizing damaged DNA: A double-edged sword.
    Georgiades E; Crosetto N; Bienko M
    Mol Cell; 2024 Jan; 84(1):12-13. PubMed ID: 38181754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SATB1, senescence and senescence-related diseases.
    Qi W; Bai J; Wang R; Zeng X; Zhang L
    J Cell Physiol; 2024 May; ():. PubMed ID: 38801120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging and radiation: bad companions.
    Hernández L; Terradas M; Camps J; Martín M; Tusell L; Genescà A
    Aging Cell; 2015 Apr; 14(2):153-61. PubMed ID: 25645467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Putting aging on ICE.
    Teefy BB; Benayoun BA
    Cell Metab; 2023 Mar; 35(3):383-385. PubMed ID: 36889279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Too big not to fail: emerging evidence for size-induced senescence.
    Manohar S; Neurohr GE
    FEBS J; 2023 Nov; ():. PubMed ID: 37986656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apolipoprotein E regulates chromatin stability and senescence.
    Wang L; Dou Z
    Nat Aging; 2022 Apr; 2(4):282-284. PubMed ID: 37117742
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.