These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 25219361)
1. Mapping anisotropy of the proximal femur for enhanced image based finite element analysis. Enns-Bray WS; Owoc JS; Nishiyama KK; Boyd SK J Biomech; 2014 Oct; 47(13):3272-8. PubMed ID: 25219361 [TBL] [Abstract][Full Text] [Related]
2. Mapping anisotropy improves QCT-based finite element estimation of hip strength in pooled stance and side-fall load configurations. Panyasantisuk J; Dall'Ara E; Pretterklieber M; Pahr DH; Zysset PK Med Eng Phys; 2018 Sep; 59():36-42. PubMed ID: 30131112 [TBL] [Abstract][Full Text] [Related]
3. Morphology based anisotropic finite element models of the proximal femur validated with experimental data. Enns-Bray WS; Ariza O; Gilchrist S; Widmer Soyka RP; Vogt PJ; Palsson H; Boyd SK; Guy P; Cripton PA; Ferguson SJ; Helgason B Med Eng Phys; 2016 Nov; 38(11):1339-1347. PubMed ID: 27641660 [TBL] [Abstract][Full Text] [Related]
4. Orthotropic HR-pQCT-based FE models improve strength predictions for stance but not for side-way fall loading compared to isotropic QCT-based FE models of human femurs. Luisier B; Dall'Ara E; Pahr DH J Mech Behav Biomed Mater; 2014 Apr; 32():287-299. PubMed ID: 24508715 [TBL] [Abstract][Full Text] [Related]
5. A novel approach to estimate trabecular bone anisotropy using a database approach. Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430 [TBL] [Abstract][Full Text] [Related]
6. Quantitative computed tomography-based finite element analysis predictions of femoral strength and stiffness depend on computed tomography settings. Dragomir-Daescu D; Salas C; Uthamaraj S; Rossman T J Biomech; 2015 Jan; 48(1):153-61. PubMed ID: 25442008 [TBL] [Abstract][Full Text] [Related]
7. Concept and development of an orthotropic FE model of the proximal femur. Wirtz DC; Pandorf T; Portheine F; Radermacher K; Schiffers N; Prescher A; Weichert D; Niethard FU J Biomech; 2003 Feb; 36(2):289-93. PubMed ID: 12547369 [TBL] [Abstract][Full Text] [Related]
8. A novel approach to estimate trabecular bone anisotropy from stress tensors. Hazrati Marangalou J; Ito K; van Rietbergen B Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672 [TBL] [Abstract][Full Text] [Related]
9. An exclusion approach for addressing partial volume artifacts with quantititive computed tomography-based finite element modeling of the proximal tibia. Kalajahi SMH; Nazemi SM; Johnston JD Med Eng Phys; 2020 Feb; 76():95-100. PubMed ID: 31870545 [TBL] [Abstract][Full Text] [Related]
10. Constructing anisotropic finite element model of bone from computed tomography (CT). Kazembakhshi S; Luo Y Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965 [TBL] [Abstract][Full Text] [Related]
11. Dependence of anisotropy of human lumbar vertebral trabecular bone on quantitative computed tomography-based apparent density. Aiyangar AK; Vivanco J; Au AG; Anderson PA; Smith EL; Ploeg HL J Biomech Eng; 2014 Sep; 136(9):091003. PubMed ID: 24825322 [TBL] [Abstract][Full Text] [Related]
12. A novel registration-based methodology for prediction of trabecular bone fabric from clinical QCT: A comprehensive analysis. Chandran V; Reyes M; Zysset P PLoS One; 2017; 12(11):e0187874. PubMed ID: 29176881 [TBL] [Abstract][Full Text] [Related]
13. Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study. Nazemi SM; Cooper DM; Johnston JD Med Eng Phys; 2016 Sep; 38(9):978-87. PubMed ID: 27372175 [TBL] [Abstract][Full Text] [Related]
14. Effect of specimen-specific anisotropic material properties in quantitative computed tomography-based finite element analysis of the vertebra. Unnikrishnan GU; Barest GD; Berry DB; Hussein AI; Morgan EF J Biomech Eng; 2013 Oct; 135(10):101007-11. PubMed ID: 23942609 [TBL] [Abstract][Full Text] [Related]
15. Can CT image deblurring improve finite element predictions at the proximal femur? Falcinelli C; Schileo E; Pakdel A; Whyne C; Cristofolini L; Taddei F J Mech Behav Biomed Mater; 2016 Oct; 63():337-351. PubMed ID: 27450036 [TBL] [Abstract][Full Text] [Related]
16. Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia. Nazemi SM; Kalajahi SMH; Cooper DML; Kontulainen SA; Holdsworth DW; Masri BA; Wilson DR; Johnston JD J Biomech; 2017 Jul; 59():101-108. PubMed ID: 28601243 [TBL] [Abstract][Full Text] [Related]
17. Comparison of proximal femur and vertebral body strength improvements in the FREEDOM trial using an alternative finite element methodology. Zysset P; Pahr D; Engelke K; Genant HK; McClung MR; Kendler DL; Recknor C; Kinzl M; Schwiedrzik J; Museyko O; Wang A; Libanati C Bone; 2015 Dec; 81():122-130. PubMed ID: 26141837 [TBL] [Abstract][Full Text] [Related]
18. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments. Trabelsi N; Yosibash Z J Biomech Eng; 2011 Jun; 133(6):061001. PubMed ID: 21744921 [TBL] [Abstract][Full Text] [Related]
19. Finite element modeling of the human thoracolumbar spine. Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762 [TBL] [Abstract][Full Text] [Related]
20. Are DXA/aBMD and QCT/FEA Stiffness and Strength Estimates Sensitive to Sex and Age? Rezaei A; Giambini H; Rossman T; Carlson KD; Yaszemski MJ; Lu L; Dragomir-Daescu D Ann Biomed Eng; 2017 Dec; 45(12):2847-2856. PubMed ID: 28940110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]