These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 25219623)

  • 21. Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins.
    Shen HB; Chou KC
    Protein Eng Des Sel; 2007 Jan; 20(1):39-46. PubMed ID: 17244638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of protein structural classes by Chou's pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis.
    Li ZC; Zhou XB; Dai Z; Zou XY
    Amino Acids; 2009 Jul; 37(2):415-25. PubMed ID: 18726140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition.
    Shi JY; Zhang SW; Pan Q; Cheng YM; Xie J
    Amino Acids; 2007 Jul; 33(1):69-74. PubMed ID: 17235454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An ensemble method for predicting subnuclear localizations from primary protein structures.
    Han GS; Yu ZG; Anh V; Krishnajith AP; Tian YC
    PLoS One; 2013; 8(2):e57225. PubMed ID: 23460833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of protein subcellular localization.
    Yu CS; Chen YC; Lu CH; Hwang JK
    Proteins; 2006 Aug; 64(3):643-51. PubMed ID: 16752418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting the subcellular localization of mycobacterial proteins by incorporating the optimal tripeptides into the general form of pseudo amino acid composition.
    Zhu PP; Li WC; Zhong ZJ; Deng EZ; Ding H; Chen W; Lin H
    Mol Biosyst; 2015 Feb; 11(2):558-63. PubMed ID: 25437899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CE-PLoc: an ensemble classifier for predicting protein subcellular locations by fusing different modes of pseudo amino acid composition.
    Khan A; Majid A; Hayat M
    Comput Biol Chem; 2011 Aug; 35(4):218-29. PubMed ID: 21864791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein subcellular localization prediction using artificial intelligence technology.
    Nair R; Rost B
    Methods Mol Biol; 2008; 484():435-63. PubMed ID: 18592195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites.
    Xiao X; Wu ZC; Chou KC
    PLoS One; 2011; 6(6):e20592. PubMed ID: 21698097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of bacterial protein subcellular localization by incorporating various features into Chou's PseAAC and a backward feature selection approach.
    Li L; Yu S; Xiao W; Li Y; Li M; Huang L; Zheng X; Zhou S; Yang H
    Biochimie; 2014 Sep; 104():100-7. PubMed ID: 24929100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PSLpred: prediction of subcellular localization of bacterial proteins.
    Bhasin M; Garg A; Raghava GP
    Bioinformatics; 2005 May; 21(10):2522-4. PubMed ID: 15699023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MSLoc-DT: a new method for predicting the protein subcellular location of multispecies based on decision templates.
    Zhang SW; Liu YF; Yu Y; Zhang TH; Fan XN
    Anal Biochem; 2014 Mar; 449():164-71. PubMed ID: 24361712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subcellular protein localization (cell envelope) in Phaeobacter inhibens DSM 17395.
    Koßmehl S; Wöhlbrand L; Drüppel K; Feenders C; Blasius B; Rabus R
    Proteomics; 2013 Oct; 13(18-19):2743-60. PubMed ID: 23907795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gneg-mPLoc: a top-down strategy to enhance the quality of predicting subcellular localization of Gram-negative bacterial proteins.
    Shen HB; Chou KC
    J Theor Biol; 2010 May; 264(2):326-33. PubMed ID: 20093124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting homo-oligomers and hetero-oligomers by pseudo-amino acid composition: an approach from discrete wavelet transformation.
    Qiu JD; Sun XY; Suo SB; Shi SP; Huang SY; Liang RP; Zhang L
    Biochimie; 2011 Jul; 93(7):1132-8. PubMed ID: 21466835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using support vector machines for prediction of protein structural classes based on discrete wavelet transform.
    Qiu JD; Luo SH; Huang JH; Liang RP
    J Comput Chem; 2009 Jun; 30(8):1344-50. PubMed ID: 19009604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predict Gram-Positive and Gram-Negative Subcellular Localization via Incorporating Evolutionary Information and Physicochemical Features Into Chou's General PseAAC.
    Sharma R; Dehzangi A; Lyons J; Paliwal K; Tsunoda T; Sharma A
    IEEE Trans Nanobioscience; 2015 Dec; 14(8):915-26. PubMed ID: 26584499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of membrane proteins using split amino acid and ensemble classification.
    Hayat M; Khan A; Yeasin M
    Amino Acids; 2012 Jun; 42(6):2447-60. PubMed ID: 21850437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou's pseudo amino acid composition.
    Kong L; Zhang L; Lv J
    J Theor Biol; 2014 Mar; 344():12-8. PubMed ID: 24316044
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting the subcellular localization of human proteins using machine learning and exploratory data analysis.
    Acquaah-Mensah GK; Leach SM; Guda C
    Genomics Proteomics Bioinformatics; 2006 May; 4(2):120-33. PubMed ID: 16970551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.