These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25219873)

  • 1. An extended model for ultrasonic-based enhanced oil recovery with experimental validation.
    Mohsin M; Meribout M
    Ultrason Sonochem; 2015 Mar; 23():413-23. PubMed ID: 25219873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR).
    Adil M; Lee K; Mohd Zaid H; Ahmad Latiff NR; Alnarabiji MS
    PLoS One; 2018; 13(2):e0193518. PubMed ID: 29489897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A technique for evaluating the oil/heavy-oil viscosity changes under ultrasound in a simulated porous medium.
    Hamidi H; Mohammadian E; Junin R; Rafati R; Manan M; Azdarpour A; Junid M
    Ultrasonics; 2014 Feb; 54(2):655-62. PubMed ID: 24075416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on frequency optimization and mechanism of ultrasonic waves assisting water flooding in low-permeability reservoirs.
    Li X; Pu C; Chen X; Huang F; Zheng H
    Ultrason Sonochem; 2021 Jan; 70():105291. PubMed ID: 32763749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound-assisted CO
    Hamidi H; Sharifi Haddad A; Mohammadian E; Rafati R; Azdarpour A; Ghahri P; Ombewa P; Neuert T; Zink A
    Ultrason Sonochem; 2017 Mar; 35(Pt A):243-250. PubMed ID: 27720591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immiscible displacement of oil by water in consolidated porous media due to capillary imbibition under ultrasonic waves.
    Hamida T; Babadagli T
    J Acoust Soc Am; 2007 Sep; 122(3):1539. PubMed ID: 17927413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sonochemical approaches to enhanced oil recovery.
    Abramov VO; Abramova AV; Bayazitov VM; Altunina LK; Gerasin AS; Pashin DM; Mason TJ
    Ultrason Sonochem; 2015 Jul; 25():76-81. PubMed ID: 25242671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State-of-the-art on ultrasonic oil production technique for EOR in China.
    Wang Z; Yin C
    Ultrason Sonochem; 2017 Sep; 38():553-559. PubMed ID: 28633857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of intensity and frequency of ultrasonic waves on capillary interaction and oil recovery from different rock types.
    Naderi K; Babadagli T
    Ultrason Sonochem; 2010 Mar; 17(3):500-8. PubMed ID: 19932981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reprint of: State-of-the-art on ultrasonic oil production technique for EOR in China.
    Wang Z; Yin C
    Ultrason Sonochem; 2018 Jan; 40(Pt B):201-207. PubMed ID: 29032171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic technology for enhanced oil recovery from failing oil wells and the equipment for its implemention.
    Abramov VO; Mullakaev MS; Abramova AV; Esipov IB; Mason TJ
    Ultrason Sonochem; 2013 Sep; 20(5):1289-95. PubMed ID: 23587727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Investigation of Polymer-Coated Silica Nanoparticles for Enhanced Oil Recovery.
    Bila A; Stensen JÅ; Torsæter O
    Nanomaterials (Basel); 2019 May; 9(6):. PubMed ID: 31159232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised deep learning-based paradigm to screen the enhanced oil recovery scenarios.
    Kumar Pandey R; Gandomkar A; Vaferi B; Kumar A; Torabi F
    Sci Rep; 2023 Mar; 13(1):4892. PubMed ID: 36966250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Investigation of Polymer-Coated Silica Nanoparticles for EOR under Harsh Reservoir Conditions of High Temperature and Salinity.
    Bila A; Torsæter O
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Oil Recovery Method Selection for Shale Oil Based on Numerical Simulations.
    Mukhina E; Cheremisin A; Khakimova L; Garipova A; Dvoretskaya E; Zvada M; Kalacheva D; Prochukhan K; Kasyanenko A; Cheremisin A
    ACS Omega; 2021 Sep; 6(37):23731-23741. PubMed ID: 34568653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detailed investigations of the influence of catalyst packing porosity on the performance of THAI-CAPRI process for in situ catalytic upgrading of heavy oil and bitumen.
    Ado MR
    J Pet Explor Prod Technol; 2022; 12(3):661-678. PubMed ID: 34692365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle inventory of CO2 in an enhanced oil recovery system.
    Jaramillo P; Griffin WM; McCoy ST
    Environ Sci Technol; 2009 Nov; 43(21):8027-32. PubMed ID: 19924918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sonication radiation on oil recovery by ultrasonic waves stimulated water-flooding.
    Mohammadian E; Junin R; Rahmani O; Idris AK
    Ultrasonics; 2013 Feb; 53(2):607-14. PubMed ID: 23137783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Core Flood and Microfluidics Investigation of Nanocellulose as a Chemical Additive to Water Flooding for EOR.
    Aadland RC; Akarri S; Heggset EB; Syverud K; Torsæter O
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32630280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic and sonochemical methods for altering the viscosity of oil during recovery and pipeline transportation.
    Abramov VO; Abramova AV; Bayazitov VM; Mullakaev MS; Marnosov AV; Ildiyakov AV
    Ultrason Sonochem; 2017 Mar; 35(Pt A):389-396. PubMed ID: 27789178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.