BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25220216)

  • 1. Full-solution processed flexible organic solar cells using low-cost printable copper electrodes.
    Li K; Zhen H; Niu L; Fang X; Zhang Y; Guo R; Yu Y; Yan F; Li H; Zheng Z
    Adv Mater; 2014 Nov; 26(42):7271-8. PubMed ID: 25220216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes.
    Yu JS; Kim I; Kim JS; Jo J; Larsen-Olsen TT; Søndergaard RR; Hösel M; Angmo D; Jørgensen M; Krebs FC
    Nanoscale; 2012 Sep; 4(19):6032-40. PubMed ID: 22915093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency.
    Zhang X; Lu Z; Ye L; Zhan C; Hou J; Zhang S; Jiang B; Zhao Y; Huang J; Zhang S; Liu Y; Shi Q; Liu Y; Yao J
    Adv Mater; 2013 Oct; 25(40):5791-7. PubMed ID: 23925952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution-processed MoS(x) as an efficient anode buffer layer in organic solar cells.
    Li X; Zhang W; Wu Y; Min C; Fang J
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8823-7. PubMed ID: 24018132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution-processed MoO₃ thin films as a hole-injection layer for organic solar cells.
    Girotto C; Voroshazi E; Cheyns D; Heremans P; Rand BP
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3244-7. PubMed ID: 21830819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-Solution-Processed Metal-Oxide-Free Flexible Organic Solar Cells with Over 10% Efficiency.
    Song W; Fan X; Xu B; Yan F; Cui H; Wei Q; Peng R; Hong L; Huang J; Ge Z
    Adv Mater; 2018 Jun; 30(26):e1800075. PubMed ID: 29766587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Silver Mesh Electrode for ITO-Free Flexible Polymer Solar Cells with Good Mechanical Stability.
    Kim W; Kim S; Kang I; Jung MS; Kim SJ; Kim JK; Cho SM; Kim JH; Park JH
    ChemSusChem; 2016 May; 9(9):1042-9. PubMed ID: 27038288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High efficiency hybrid silicon nanopillar-polymer solar cells.
    Pudasaini PR; Ruiz-Zepeda F; Sharma M; Elam D; Ponce A; Ayon AA
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9620-7. PubMed ID: 24032746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully Printable Organic and Perovskite Solar Cells with Transfer-Printed Flexible Electrodes.
    Li X; Tang X; Ye T; Wu D; Wang H; Wang X
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18730-18738. PubMed ID: 28504512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention of power conversion efficiency--from small area to large area polymer solar cells.
    Das AJ; Narayan KS
    Adv Mater; 2013 Apr; 25(15):2193-9. PubMed ID: 23355271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells.
    Yun JM; Yeo JS; Kim J; Jeong HG; Kim DY; Noh YJ; Kim SS; Ku BC; Na SI
    Adv Mater; 2011 Nov; 23(42):4923-8. PubMed ID: 21954085
    [No Abstract]   [Full Text] [Related]  

  • 12. CuInS₂ nanocrystals/PEDOT:PSS composite counter electrode for dye-sensitized solar cells.
    Zhang Z; Zhang X; Xu H; Liu Z; Pang S; Zhou X; Dong S; Chen X; Cui G
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6242-6. PubMed ID: 23075280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-basic high-performance molecules for solution-processed organic solar cells.
    van der Poll TS; Love JA; Nguyen TQ; Bazan GC
    Adv Mater; 2012 Jul; 24(27):3646-9. PubMed ID: 22674636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct comparison of highly efficient solution- and vacuum-processed organic solar cells based on merocyanine dyes.
    Kronenberg NM; Steinmann V; Bürckstümmer H; Hwang J; Hertel D; Würthner F; Meerholz K
    Adv Mater; 2010 Oct; 22(37):4193-7. PubMed ID: 20512818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling surface enrichment in polymeric hole extraction layers to achieve high-efficiency organic photovoltaic cells.
    Kim DH; Lim KG; Park JH; Lee TW
    ChemSusChem; 2012 Oct; 5(10):2053-7. PubMed ID: 22945400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraflexible polymer solar cells using amorphous zinc-indium-tin oxide transparent electrodes.
    Zhou N; Buchholz DB; Zhu G; Yu X; Lin H; Facchetti A; Marks TJ; Chang RP
    Adv Mater; 2014 Feb; 26(7):1098-104. PubMed ID: 24123578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bulk-Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization.
    Kang H; Kim G; Kim J; Kwon S; Kim H; Lee K
    Adv Mater; 2016 Sep; 28(36):7821-7861. PubMed ID: 27345936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured titanium nitride/PEDOT:PSS composite films as counter electrodes of dye-sensitized solar cells.
    Xu H; Zhang X; Zhang C; Liu Z; Zhou X; Pang S; Chen X; Dong S; Zhang Z; Zhang L; Han P; Wang X; Cui G
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):1087-92. PubMed ID: 22264094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conducting polymer transistors making use of activated carbon gate electrodes.
    Tang H; Kumar P; Zhang S; Yi Z; Crescenzo GD; Santato C; Soavi F; Cicoira F
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):969-73. PubMed ID: 25510960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of flexible organic solar cells with highly conductive and transparent metal-oxide multilayer electrodes based on silver oxide.
    Yun J; Wang W; Bae TS; Park YH; Kang YC; Kim DH; Lee S; Lee GH; Song M; Kang JW
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9933-41. PubMed ID: 24060352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.