These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 25220262)
1. Insights into β2-adrenergic receptor binding from structures of the N-terminal lobe of ARRDC3. Qi S; O'Hayre M; Gutkind JS; Hurley JH Protein Sci; 2014 Dec; 23(12):1708-16. PubMed ID: 25220262 [TBL] [Abstract][Full Text] [Related]
2. Structural and biochemical basis for ubiquitin ligase recruitment by arrestin-related domain-containing protein-3 (ARRDC3). Qi S; O'Hayre M; Gutkind JS; Hurley JH J Biol Chem; 2014 Feb; 289(8):4743-52. PubMed ID: 24379409 [TBL] [Abstract][Full Text] [Related]
3. The α-Arrestin ARRDC3 Regulates the Endosomal Residence Time and Intracellular Signaling of the β2-Adrenergic Receptor. Tian X; Irannejad R; Bowman SL; Du Y; Puthenveedu MA; von Zastrow M; Benovic JL J Biol Chem; 2016 Jul; 291(28):14510-25. PubMed ID: 27226565 [TBL] [Abstract][Full Text] [Related]
4. Arrestin domain-containing protein 3 recruits the NEDD4 E3 ligase to mediate ubiquitination of the beta2-adrenergic receptor. Nabhan JF; Pan H; Lu Q EMBO Rep; 2010 Aug; 11(8):605-11. PubMed ID: 20559325 [TBL] [Abstract][Full Text] [Related]
5. Visualization of arrestin recruitment by a G-protein-coupled receptor. Shukla AK; Westfield GH; Xiao K; Reis RI; Huang LY; Tripathi-Shukla P; Qian J; Li S; Blanc A; Oleskie AN; Dosey AM; Su M; Liang CR; Gu LL; Shan JM; Chen X; Hanna R; Choi M; Yao XJ; Klink BU; Kahsai AW; Sidhu SS; Koide S; Penczek PA; Kossiakoff AA; Woods VL; Kobilka BK; Skiniotis G; Lefkowitz RJ Nature; 2014 Aug; 512(7513):218-222. PubMed ID: 25043026 [TBL] [Abstract][Full Text] [Related]
6. Divergent regulation of α-arrestin ARRDC3 function by ubiquitination. Wedegaertner H; Bosompra O; Kufareva I; Trejo J Mol Biol Cell; 2023 Aug; 34(9):ar93. PubMed ID: 37223976 [TBL] [Abstract][Full Text] [Related]
7. Receptor/beta-arrestin complex formation and the differential trafficking and resensitization of beta2-adrenergic and angiotensin II type 1A receptors. Anborgh PH; Seachrist JL; Dale LB; Ferguson SS Mol Endocrinol; 2000 Dec; 14(12):2040-53. PubMed ID: 11117533 [TBL] [Abstract][Full Text] [Related]
8. beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. Shenoy SK; Drake MT; Nelson CD; Houtz DA; Xiao K; Madabushi S; Reiter E; Premont RT; Lichtarge O; Lefkowitz RJ J Biol Chem; 2006 Jan; 281(2):1261-73. PubMed ID: 16280323 [TBL] [Abstract][Full Text] [Related]
10. Reactive oxygen species are required for β2 adrenergic receptor-β-arrestin interactions and signaling to ERK1/2. Singh M; Moniri NH Biochem Pharmacol; 2012 Sep; 84(5):661-9. PubMed ID: 22728070 [TBL] [Abstract][Full Text] [Related]
11. Arf6 negatively controls the rapid recycling of the β2 adrenergic receptor. Macia E; Partisani M; Paleotti O; Luton F; Franco M J Cell Sci; 2012 Sep; 125(Pt 17):4026-35. PubMed ID: 22611259 [TBL] [Abstract][Full Text] [Related]
12. Engineered hyperphosphorylation of the β2-adrenoceptor prolongs arrestin-3 binding and induces arrestin internalization. Zindel D; Butcher AJ; Al-Sabah S; Lanzerstorfer P; Weghuber J; Tobin AB; Bünemann M; Krasel C Mol Pharmacol; 2015 Feb; 87(2):349-62. PubMed ID: 25425623 [TBL] [Abstract][Full Text] [Related]
13. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Goodman OB; Krupnick JG; Santini F; Gurevich VV; Penn RB; Gagnon AW; Keen JH; Benovic JL Nature; 1996 Oct; 383(6599):447-50. PubMed ID: 8837779 [TBL] [Abstract][Full Text] [Related]
14. Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Shenoy SK; McDonald PH; Kohout TA; Lefkowitz RJ Science; 2001 Nov; 294(5545):1307-13. PubMed ID: 11588219 [TBL] [Abstract][Full Text] [Related]
15. Distinct roles for β-arrestin2 and arrestin-domain-containing proteins in β2 adrenergic receptor trafficking. Han SO; Kommaddi RP; Shenoy SK EMBO Rep; 2013 Feb; 14(2):164-71. PubMed ID: 23208550 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of pre-activated arrestin p44. Kim YJ; Hofmann KP; Ernst OP; Scheerer P; Choe HW; Sommer ME Nature; 2013 May; 497(7447):142-6. PubMed ID: 23604253 [TBL] [Abstract][Full Text] [Related]
17. Dual role of the beta2-adrenergic receptor C terminus for the binding of beta-arrestin and receptor internalization. Krasel C; Zabel U; Lorenz K; Reiner S; Al-Sabah S; Lohse MJ J Biol Chem; 2008 Nov; 283(46):31840-8. PubMed ID: 18801735 [TBL] [Abstract][Full Text] [Related]
18. The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. Laporte SA; Oakley RH; Holt JA; Barak LS; Caron MG J Biol Chem; 2000 Jul; 275(30):23120-6. PubMed ID: 10770944 [TBL] [Abstract][Full Text] [Related]
19. Quantification of beta adrenergic receptor subtypes in beta-arrestin knockout mouse airways. Hegde A; Strachan RT; Walker JK PLoS One; 2015; 10(2):e0116458. PubMed ID: 25658948 [TBL] [Abstract][Full Text] [Related]
20. Synergistic regulation of beta2-adrenergic receptor sequestration: intracellular complement of beta-adrenergic receptor kinase and beta-arrestin determine kinetics of internalization. Ménard L; Ferguson SS; Zhang J; Lin FT; Lefkowitz RJ; Caron MG; Barak LS Mol Pharmacol; 1997 May; 51(5):800-8. PubMed ID: 9145918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]