These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 25220349)

  • 1. Asymmetric distribution of phosphatidylserine is generated in the absence of phospholipid flippases in Saccharomyces cerevisiae.
    Mioka T; Fujimura-Kamada K; Tanaka K
    Microbiologyopen; 2014 Oct; 3(5):803-21. PubMed ID: 25220349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of phosphatidylserine in phospholipid flippase-mediated vesicle transport in Saccharomyces cerevisiae.
    Takeda M; Yamagami K; Tanaka K
    Eukaryot Cell; 2014 Mar; 13(3):363-75. PubMed ID: 24390140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Essential Neo1 Protein from Budding Yeast Plays a Role in Establishing Aminophospholipid Asymmetry of the Plasma Membrane.
    Takar M; Wu Y; Graham TR
    J Biol Chem; 2016 Jul; 291(30):15727-39. PubMed ID: 27235400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type IV P-type ATPases distinguish mono- versus diacyl phosphatidylserine using a cytofacial exit gate in the membrane domain.
    Baldridge RD; Xu P; Graham TR
    J Biol Chem; 2013 Jul; 288(27):19516-27. PubMed ID: 23709217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae.
    Huang Y; Takar M; Best JT; Graham TR
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Feb; 1865(2):158581. PubMed ID: 31786280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of residues defining phospholipid flippase substrate specificity of type IV P-type ATPases.
    Baldridge RD; Graham TR
    Proc Natl Acad Sci U S A; 2012 Feb; 109(6):E290-8. PubMed ID: 22308393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The PQ-loop protein Any1 segregates Drs2 and Neo1 functions required for viability and plasma membrane phospholipid asymmetry.
    Takar M; Huang Y; Graham TR
    J Lipid Res; 2019 May; 60(5):1032-1042. PubMed ID: 30824614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inositol depletion restores vesicle transport in yeast phospholipid flippase mutants.
    Yamagami K; Yamamoto T; Sakai S; Mioka T; Sano T; Igarashi Y; Tanaka K
    PLoS One; 2015; 10(3):e0120108. PubMed ID: 25781026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of phospholipid translocase activity with purified Drs2p, a type-IV P-type ATPase from budding yeast.
    Zhou X; Graham TR
    Proc Natl Acad Sci U S A; 2009 Sep; 106(39):16586-91. PubMed ID: 19805341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid flippases Lem3p-Dnf1p and Lem3p-Dnf2p are involved in the sorting of the tryptophan permease Tat2p in yeast.
    Hachiro T; Yamamoto T; Nakano K; Tanaka K
    J Biol Chem; 2013 Feb; 288(5):3594-608. PubMed ID: 23250744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function.
    Natarajan P; Wang J; Hua Z; Graham TR
    Proc Natl Acad Sci U S A; 2004 Jul; 101(29):10614-9. PubMed ID: 15249668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cfs1p, a Novel Membrane Protein in the PQ-Loop Family, Is Involved in Phospholipid Flippase Functions in Yeast.
    Yamamoto T; Fujimura-Kamada K; Shioji E; Suzuki R; Tanaka K
    G3 (Bethesda); 2017 Jan; 7(1):179-192. PubMed ID: 28057802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid flippases and Sfk1p, a novel regulator of phospholipid asymmetry, contribute to low permeability of the plasma membrane.
    Mioka T; Fujimura-Kamada K; Mizugaki N; Kishimoto T; Sano T; Nunome H; Williams DE; Andersen RJ; Tanaka K
    Mol Biol Cell; 2018 May; 29(10):1203-1218. PubMed ID: 29540528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid flippases in polarized growth.
    López-Marqués RL
    Curr Genet; 2021 Apr; 67(2):255-262. PubMed ID: 33388852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudohyphal growth in
    Frøsig MM; Costa SR; Liesche J; Østerberg JT; Hanisch S; Nintemann S; Sørensen H; Palmgren M; Pomorski TG; López-Marqués RL
    J Cell Sci; 2020 Aug; 133(15):. PubMed ID: 32661085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles for the Drs2p-Cdc50p complex in protein transport and phosphatidylserine asymmetry of the yeast plasma membrane.
    Chen S; Wang J; Muthusamy BP; Liu K; Zare S; Andersen RJ; Graham TR
    Traffic; 2006 Nov; 7(11):1503-17. PubMed ID: 16956384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphatidylserine translocation at the yeast trans-Golgi network regulates protein sorting into exocytic vesicles.
    Hankins HM; Sere YY; Diab NS; Menon AK; Graham TR
    Mol Biol Cell; 2015 Dec; 26(25):4674-85. PubMed ID: 26466678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution.
    Hankins HM; Baldridge RD; Xu P; Graham TR
    Traffic; 2015 Jan; 16(1):35-47. PubMed ID: 25284293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A complex genetic interaction implicates that phospholipid asymmetry and phosphate homeostasis regulate Golgi functions.
    Miyasaka M; Mioka T; Kishimoto T; Itoh E; Tanaka K
    PLoS One; 2020; 15(7):e0236520. PubMed ID: 32730286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of the P4B ATPase lipid flippase activity.
    Bai L; Jain BK; You Q; Duan HD; Takar M; Graham TR; Li H
    Nat Commun; 2021 Oct; 12(1):5963. PubMed ID: 34645814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.