These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 25220357)
1. Replicating disease spread in empirical cattle networks by adjusting the probability of infection in random networks. Duncan AJ; Gunn GJ; Umstatter C; Humphry RW Theor Popul Biol; 2014 Dec; 98():11-8. PubMed ID: 25220357 [TBL] [Abstract][Full Text] [Related]
2. The influence of empirical contact networks on modelling diseases in cattle. Duncan AJ; Gunn GJ; Lewis FI; Umstatter C; Humphry RW Epidemics; 2012 Aug; 4(3):117-23. PubMed ID: 22939308 [TBL] [Abstract][Full Text] [Related]
3. Network analysis of Italian cattle trade patterns and evaluation of risks for potential disease spread. Natale F; Giovannini A; Savini L; Palma D; Possenti L; Fiore G; Calistri P Prev Vet Med; 2009 Dec; 92(4):341-50. PubMed ID: 19775765 [TBL] [Abstract][Full Text] [Related]
4. The Potential Role of Direct and Indirect Contacts on Infection Spread in Dairy Farm Networks. Rossi G; De Leo GA; Pongolini S; Natalini S; Zarenghi L; Ricchi M; Bolzoni L PLoS Comput Biol; 2017 Jan; 13(1):e1005301. PubMed ID: 28125610 [TBL] [Abstract][Full Text] [Related]
5. Epidemiological implications of the contact network structure for cattle farms and the 20-80 rule. Woolhouse ME; Shaw DJ; Matthews L; Liu WC; Mellor DJ; Thomas MR Biol Lett; 2005 Sep; 1(3):350-2. PubMed ID: 17148204 [TBL] [Abstract][Full Text] [Related]
6. Epidemic spreading in networks with nonrandom long-range interactions. Estrada E; Kalala-Mutombo F; Valverde-Colmeiro A Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036110. PubMed ID: 22060459 [TBL] [Abstract][Full Text] [Related]
7. Estimation of distance related probability of animal movements between holdings and implications for disease spread modeling. Lindström T; Sisson SA; Nöremark M; Jonsson A; Wennergren U Prev Vet Med; 2009 Oct; 91(2-4):85-94. PubMed ID: 19540009 [TBL] [Abstract][Full Text] [Related]
8. Network analysis of cattle and pig movements in Sweden: measures relevant for disease control and risk based surveillance. Nöremark M; Håkansson N; Lewerin SS; Lindberg A; Jonsson A Prev Vet Med; 2011 May; 99(2-4):78-90. PubMed ID: 21288583 [TBL] [Abstract][Full Text] [Related]
9. Characterization of contact structures for the spread of infectious diseases in a pork supply chain in northern Germany by dynamic network analysis of yearly and monthly networks. Büttner K; Krieter J; Traulsen I Transbound Emerg Dis; 2015 Apr; 62(2):188-99. PubMed ID: 23692588 [TBL] [Abstract][Full Text] [Related]
10. Age-structured dynamic, stochastic and mechanistic simulation model of Salmonella Dublin infection within dairy herds. Nielsen LR; Kudahl AB; Østergaard S Prev Vet Med; 2012 Jun; 105(1-2):59-74. PubMed ID: 22417623 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of risk and vulnerability using a Disease Flow Centrality measure in dynamic cattle trade networks. Natale F; Savini L; Giovannini A; Calistri P; Candeloro L; Fiore G Prev Vet Med; 2011 Feb; 98(2-3):111-8. PubMed ID: 21159393 [TBL] [Abstract][Full Text] [Related]
12. The topology of between-herd cattle contacts in a mixed farming production system in western Kenya. Ogola J; Fèvre EM; Gitau GK; Christley R; Muchemi G; de Glanville WA Prev Vet Med; 2018 Oct; 158():43-50. PubMed ID: 30220395 [TBL] [Abstract][Full Text] [Related]
13. An infectious disease model on empirical networks of human contact: bridging the gap between dynamic network data and contact matrices. Machens A; Gesualdo F; Rizzo C; Tozzi AE; Barrat A; Cattuto C BMC Infect Dis; 2013 Apr; 13():185. PubMed ID: 23618005 [TBL] [Abstract][Full Text] [Related]
14. Combining Salmonella Dublin genome information and contact-tracing to substantiate a new approach for improved detection of infectious transmission routes in cattle populations. de Knegt LV; Kudirkiene E; Rattenborg E; Sørensen G; Denwood MJ; Olsen JE; Nielsen LR Prev Vet Med; 2020 Aug; 181():104531. PubMed ID: 30220483 [TBL] [Abstract][Full Text] [Related]
15. Competing epidemics on complex networks. Karrer B; Newman ME Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036106. PubMed ID: 22060455 [TBL] [Abstract][Full Text] [Related]
16. Epidemic spreading in annealed directed networks: susceptible-infected-susceptible model and contact process. Kwon S; Kim Y Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012813. PubMed ID: 23410394 [TBL] [Abstract][Full Text] [Related]
17. Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. Stehlé J; Voirin N; Barrat A; Cattuto C; Colizza V; Isella L; Régis C; Pinton JF; Khanafer N; Van den Broeck W; Vanhems P BMC Med; 2011 Jul; 9():87. PubMed ID: 21771290 [TBL] [Abstract][Full Text] [Related]
18. On analytical approaches to epidemics on networks. Trapman P Theor Popul Biol; 2007 Mar; 71(2):160-73. PubMed ID: 17222879 [TBL] [Abstract][Full Text] [Related]
19. Epidemic prediction and control in weighted networks. Eames KT; Read JM; Edmunds WJ Epidemics; 2009 Mar; 1(1):70-6. PubMed ID: 21352752 [TBL] [Abstract][Full Text] [Related]
20. Structural vulnerability of the French swine industry trade network to the spread of infectious diseases. Rautureau S; Dufour B; Durand B Animal; 2012 Jul; 6(7):1152-62. PubMed ID: 23031477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]