These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25220398)

  • 41. Conformational preferences of N-methoxycarbonyl proline dipeptide.
    Kang YK; Kang NS
    J Comput Chem; 2009 May; 30(7):1116-27. PubMed ID: 18988252
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Accuracy of the microsolvation-continuum approach in computing the pK(a) and the free energies of formation of phosphate species in aqueous solution.
    Tang E; Di Tommaso D; de Leeuw NH
    Phys Chem Chem Phys; 2010 Nov; 12(41):13804-15. PubMed ID: 20862433
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Insight into trifluoromethylation - experimental electron density for Togni reagent I.
    Wang R; Kalf I; Englert U
    RSC Adv; 2018 Oct; 8(60):34287-34290. PubMed ID: 35548651
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Challenges in modelling homogeneous catalysis: new answers from ab initio molecular dynamics to the controversy over the Wacker process.
    Stirling A; Nair NN; Lledós A; Ujaque G
    Chem Soc Rev; 2014 Jul; 43(14):4940-52. PubMed ID: 24654007
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Predicting the right mechanism for hypervalent iodine reagents by applying two types of hypervalent twist models: apical twist and equatorial twist.
    Sun TY; Chen K; Lin Q; You T; Yin P
    Phys Chem Chem Phys; 2021 Mar; 23(11):6758-6762. PubMed ID: 33711091
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A free-energy perturbation method based on Monte Carlo simulations using quantum mechanical calculations (QM/MC/FEP method): application to highly solvent-dependent reactions.
    Hori K; Yamaguchi T; Uezu K; Sumimoto M
    J Comput Chem; 2011 Apr; 32(5):778-86. PubMed ID: 21341291
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Secondary hypervalent I(III)...O interactions: synthesis and structure of hypervalent complexes of diphenyl-lambda3-iodanes with 18-crown-6.
    Ochiai M; Suefuji T; Miyamoto K; Tada N; Goto S; Shiro M; Sakamoto S; Yamaguchi K
    J Am Chem Soc; 2003 Jan; 125(3):769-73. PubMed ID: 12526677
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Oxygen exchange in uranyl hydroxide via two "nonclassical" ions.
    Bühl M; Schreckenbach G
    Inorg Chem; 2010 Apr; 49(8):3821-7. PubMed ID: 20334349
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Charge-Transfer-Induced para-Selective sp
    Zhao J; Li S
    J Org Chem; 2017 Mar; 82(6):2984-2991. PubMed ID: 28225619
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anchor points for the unified Brønsted acidity scale: the rCCC model for the calculation of standard Gibbs energies of proton solvation in eleven representative liquid media.
    Himmel D; Goll SK; Leito I; Krossing I
    Chemistry; 2011 May; 17(21):5808-26. PubMed ID: 21542031
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calculation of solvation free energies of charged solutes using mixed cluster/continuum models.
    Bryantsev VS; Diallo MS; Goddard WA
    J Phys Chem B; 2008 Aug; 112(32):9709-19. PubMed ID: 18646800
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CO2 absorption in aqueous solutions of alkanolamines: mechanistic insight from quantum chemical calculations.
    Arstad B; Blom R; Swang O
    J Phys Chem A; 2007 Feb; 111(7):1222-8. PubMed ID: 17266286
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanisms of Formation and Rearrangement of Benziodoxole-Based CF
    Brea O; Szabo KJ; Himo F
    J Org Chem; 2020 Dec; 85(23):15577-15585. PubMed ID: 33201704
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Iodanes as Trifluoromethylation Reagents.
    Früh N; Charpentier J; Togni A
    Top Curr Chem; 2016; 373():167-86. PubMed ID: 26289109
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stability of ion triplets in ionic liquid/lithium salt solutions: insights from implicit and explicit solvent models and molecular dynamics simulations.
    Eilmes A; Kubisiak P
    J Comput Chem; 2015 Apr; 36(10):751-62. PubMed ID: 25691161
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Absolute solvation free energy of Li+ and Na+ ions in dimethyl sulfoxide solution: a theoretical ab initio and cluster-continuum model study.
    Westphal E; Pliego JR
    J Chem Phys; 2005 Aug; 123(7):074508. PubMed ID: 16229602
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanism of dissolution of a lithium salt in an electrolytic solvent in a lithium ion secondary battery: a direct ab initio molecular dynamics (AIMD) study.
    Tachikawa H
    Chemphyschem; 2014 Jun; 15(8):1604-10. PubMed ID: 24616076
    [TBL] [Abstract][Full Text] [Related]  

  • 59. One-pot synthesis of hypervalent iodine reagents for electrophilic trifluoromethylation.
    Matoušek V; Pietrasiak E; Schwenk R; Togni A
    J Org Chem; 2013 Jul; 78(13):6763-8. PubMed ID: 23734560
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hypervalent Iodine Compounds as Versatile Reagents for Extremely Efficient and Reversible Patterning of Graphene with Nanoscale Precision.
    Bao L; Zhao B; Yang B; Halik M; Hauke F; Hirsch A
    Adv Mater; 2021 Aug; 33(31):e2101653. PubMed ID: 34173280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.