These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 25220465)

  • 1. Enhanced TLR-MYD88 signaling stimulates autoinflammation in SH3BP2 cherubism mice and defines the etiology of cherubism.
    Yoshitaka T; Mukai T; Kittaka M; Alford LM; Masrani S; Ishida S; Yamaguchi K; Yamada M; Mizuno N; Olsen BR; Reichenberger EJ; Ueki Y
    Cell Rep; 2014 Sep; 8(6):1752-1766. PubMed ID: 25220465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SH3BP2 cherubism mutation potentiates TNF-α-induced osteoclastogenesis via NFATc1 and TNF-α-mediated inflammatory bone loss.
    Mukai T; Ishida S; Ishikawa R; Yoshitaka T; Kittaka M; Gallant R; Lin YL; Rottapel R; Brotto M; Reichenberger EJ; Ueki Y
    J Bone Miner Res; 2014 Dec; 29(12):2618-35. PubMed ID: 24916406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased myeloid cell responses to M-CSF and RANKL cause bone loss and inflammation in SH3BP2 "cherubism" mice.
    Ueki Y; Lin CY; Senoo M; Ebihara T; Agata N; Onji M; Saheki Y; Kawai T; Mukherjee PM; Reichenberger E; Olsen BR
    Cell; 2007 Jan; 128(1):71-83. PubMed ID: 17218256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of Toll-like receptors by Burkholderia pseudomallei.
    West TE; Ernst RK; Jansson-Hutson MJ; Skerrett SJ
    BMC Immunol; 2008 Aug; 9():46. PubMed ID: 18691413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone marrow transplantation improves autoinflammation and inflammatory bone loss in SH3BP2 knock-in cherubism mice.
    Yoshitaka T; Kittaka M; Ishida S; Mizuno N; Mukai T; Ueki Y
    Bone; 2015 Feb; 71():201-9. PubMed ID: 25445458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Etanercept administration to neonatal SH3BP2 knock-in cherubism mice prevents TNF-α-induced inflammation and bone loss.
    Yoshitaka T; Ishida S; Mukai T; Kittaka M; Reichenberger EJ; Ueki Y
    J Bone Miner Res; 2014; 29(5):1170-82. PubMed ID: 24978678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor progression locus 2-dependent oxidative burst drives phosphorylation of extracellular signal-regulated kinase during TLR3 and 9 signaling.
    Kuriakose T; Rada B; Watford WT
    J Biol Chem; 2014 Dec; 289(52):36089-100. PubMed ID: 25378393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Second-Generation SYK Inhibitor Entospletinib Ameliorates Fully Established Inflammation and Bone Destruction in the Cherubism Mouse Model.
    Yoshimoto T; Hayashi T; Kondo T; Kittaka M; Reichenberger EJ; Ueki Y
    J Bone Miner Res; 2018 Aug; 33(8):1513-1519. PubMed ID: 29669173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of Tankyrase-mediated destruction of 3BP2 is the underlying pathogenic mechanism of cherubism.
    Levaot N; Voytyuk O; Dimitriou I; Sircoulomb F; Chandrakumar A; Deckert M; Krzyzanowski PM; Scotter A; Gu S; Janmohamed S; Cong F; Simoncic PD; Ueki Y; La Rose J; Rottapel R
    Cell; 2011 Dec; 147(6):1324-39. PubMed ID: 22153076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tristetraprolin regulates necroptosis during tonic Toll-like receptor 4 (TLR4) signaling in murine macrophages.
    Ariana A; Alturki NA; Hajjar S; Stumpo DJ; Tiedje C; Alnemri ES; Gaestel M; Blackshear PJ; Sad S
    J Biol Chem; 2020 Apr; 295(14):4661-4672. PubMed ID: 32094226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proinflammatory cytokine production in liver regeneration is Myd88-dependent, but independent of Cd14, Tlr2, and Tlr4.
    Campbell JS; Riehle KJ; Brooling JT; Bauer RL; Mitchell C; Fausto N
    J Immunol; 2006 Feb; 176(4):2522-8. PubMed ID: 16456013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2.
    Bae YS; Lee JH; Choi SH; Kim S; Almazan F; Witztum JL; Miller YI
    Circ Res; 2009 Jan; 104(2):210-8, 21p following 218. PubMed ID: 19096031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of TLR2- and TLR4-mediated signaling in Mycobacterium tuberculosis-induced macrophage death.
    Sánchez D; Rojas M; Hernández I; Radzioch D; García LF; Barrera LF
    Cell Immunol; 2010; 260(2):128-36. PubMed ID: 19919859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycopeptidolipids from Mycobacterium avium promote macrophage activation in a TLR2- and MyD88-dependent manner.
    Sweet L; Schorey JS
    J Leukoc Biol; 2006 Aug; 80(2):415-23. PubMed ID: 16760377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the Toll-like receptor pathway in the recognition of orthopedic implant wear-debris particles.
    Pearl JI; Ma T; Irani AR; Huang Z; Robinson WH; Smith RL; Goodman SB
    Biomaterials; 2011 Aug; 32(24):5535-42. PubMed ID: 21592562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular bacterial infection-induced IFN-gamma is critically but not solely dependent on Toll-like receptor 4-myeloid differentiation factor 88-IFN-alpha beta-STAT1 signaling.
    Rothfuchs AG; Trumstedt C; Wigzell H; Rottenberg ME
    J Immunol; 2004 May; 172(10):6345-53. PubMed ID: 15128825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol.
    Byrd-Leifer CA; Block EF; Takeda K; Akira S; Ding A
    Eur J Immunol; 2001 Aug; 31(8):2448-57. PubMed ID: 11500829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GM-CSF priming drives bone marrow-derived macrophages to a pro-inflammatory pattern and downmodulates PGE2 in response to TLR2 ligands.
    Sorgi CA; Rose S; Court N; Carlos D; Paula-Silva FW; Assis PA; Frantz FG; Ryffel B; Quesniaux V; Faccioli LH
    PLoS One; 2012; 7(7):e40523. PubMed ID: 22808181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycobacterium indicus pranii and Mycobacterium bovis BCG lead to differential macrophage activation in Toll-like receptor-dependent manner.
    Kumar P; Tyagi R; Das G; Bhaskar S
    Immunology; 2014 Oct; 143(2):258-68. PubMed ID: 24766519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential role of Dok1 and Dok2 in TLR2-induced inflammatory signaling in glia.
    Downer EJ; Johnston DG; Lynch MA
    Mol Cell Neurosci; 2013 Sep; 56():148-58. PubMed ID: 23659921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.