BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 25220713)

  • 1. Ligand efficiency-based support vector regression models for predicting bioactivities of ligands to drug target proteins.
    Sugaya N
    J Chem Inf Model; 2014 Oct; 54(10):2751-63. PubMed ID: 25220713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Training based on ligand efficiency improves prediction of bioactivities of ligands and drug target proteins in a machine learning approach.
    Sugaya N
    J Chem Inf Model; 2013 Oct; 53(10):2525-37. PubMed ID: 24020509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand Efficiency Outperforms pIC50 on Both 2D MLR and 3D CoMFA Models: A Case Study on AR Antagonists.
    Li J; Bai F; Liu H; Gramatica P
    Chem Biol Drug Des; 2015 Dec; 86(6):1501-17. PubMed ID: 26198098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of support vector machine to three-dimensional shape-based virtual screening using comprehensive three-dimensional molecular shape overlay with known inhibitors.
    Sato T; Yuki H; Takaya D; Sasaki S; Tanaka A; Honma T
    J Chem Inf Model; 2012 Apr; 52(4):1015-26. PubMed ID: 22424085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beware of machine learning-based scoring functions-on the danger of developing black boxes.
    Gabel J; Desaphy J; Rognan D
    J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand efficiency based approach for efficient virtual screening of compound libraries.
    Ke YY; Coumar MS; Shiao HY; Wang WC; Chen CW; Song JS; Chen CH; Lin WH; Wu SH; Hsu JT; Chang CM; Hsieh HP
    Eur J Med Chem; 2014 Aug; 83():226-35. PubMed ID: 24960626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictions of BuChE inhibitors using support vector machine and naive Bayesian classification techniques in drug discovery.
    Fang J; Yang R; Gao L; Zhou D; Yang S; Liu AL; Du GH
    J Chem Inf Model; 2013 Nov; 53(11):3009-20. PubMed ID: 24144102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of compound potency changes in matched molecular pairs using support vector regression.
    de la Vega de León A; Bajorath J
    J Chem Inf Model; 2014 Oct; 54(10):2654-63. PubMed ID: 25191787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational fragment-based de novo design protocol guided by ligand efficiency indices (LEI).
    Cortés-Cabrera Á; Gago F; Morreale A
    Methods Mol Biol; 2015; 1289():89-100. PubMed ID: 25709035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking the Predictive Power of Ligand Efficiency Indices in QSAR.
    Cortes-Ciriano I
    J Chem Inf Model; 2016 Aug; 56(8):1576-87. PubMed ID: 27399907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of the pharmacological profile of the bound ligand in enrichment on nuclear receptors: toward the use of experimentally validated decoy ligands.
    Lagarde N; Zagury JF; Montes M
    J Chem Inf Model; 2014 Oct; 54(10):2915-44. PubMed ID: 25250508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.
    Martin E; Mukherjee P; Sullivan D; Jansen J
    J Chem Inf Model; 2011 Aug; 51(8):1942-56. PubMed ID: 21667971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New strategy for receptor-based pharmacophore query construction: a case study for 5-HT₇ receptor ligands.
    Kurczab R; Bojarski AJ
    J Chem Inf Model; 2013 Dec; 53(12):3233-43. PubMed ID: 24245803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study on the use of docking and Bayesian categorization to predict ligand binding to nicotinic acetylcholine receptors (nAChRs) subtypes.
    Kombo DC; Bencherif M
    J Chem Inf Model; 2013 Dec; 53(12):3212-22. PubMed ID: 24328365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based virtual screening of MT2 melatonin receptor: influence of template choice and structural refinement.
    Pala D; Beuming T; Sherman W; Lodola A; Rivara S; Mor M
    J Chem Inf Model; 2013 Apr; 53(4):821-35. PubMed ID: 23541165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computation of binding energies including their enthalpy and entropy components for protein-ligand complexes using support vector machines.
    Koppisetty CA; Frank M; Kemp GJ; Nyholm PG
    J Chem Inf Model; 2013 Oct; 53(10):2559-70. PubMed ID: 24050538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oversampling to overcome overfitting: exploring the relationship between data set composition, molecular descriptors, and predictive modeling methods.
    Chang CY; Hsu MT; Esposito EX; Tseng YJ
    J Chem Inf Model; 2013 Apr; 53(4):958-71. PubMed ID: 23464929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual screening for R-groups, including predicted pIC50 contributions, within large structural databases, using Topomer CoMFA.
    Cramer RD; Cruz P; Stahl G; Curtiss WC; Campbell B; Masek BB; Soltanshahi F
    J Chem Inf Model; 2008 Nov; 48(11):2180-95. PubMed ID: 18956863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of novel inhibitors of tropomyosin-related kinase A through the structure-based virtual screening with homology-modeled protein structure.
    Park H; Chi O; Kim J; Hong S
    J Chem Inf Model; 2011 Nov; 51(11):2986-93. PubMed ID: 22017333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual high-throughput screening of molecular databases.
    Seifert MH; Kraus J; Kramer B
    Curr Opin Drug Discov Devel; 2007 May; 10(3):298-307. PubMed ID: 17554856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.