These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 25220813)

  • 41. Distinct mechanisms for top-down control of neural gain and sensitivity in the owl optic tectum.
    Winkowski DE; Knudsen EI
    Neuron; 2008 Nov; 60(4):698-708. PubMed ID: 19038225
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distinct Neural Mechanisms of Spatial Attention and Expectation Guide Perceptual Inference in a Multisensory World.
    Zuanazzi A; Noppeney U
    J Neurosci; 2019 Mar; 39(12):2301-2312. PubMed ID: 30659086
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crossmodal links between vision and touch in spatial attention: a computational modelling study.
    Magosso E; Serino A; di Pellegrino G; Ursino M
    Comput Intell Neurosci; 2010; 2010():304941. PubMed ID: 19859571
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Endogenous auditory spatial attention modulates obligatory sensory activity in auditory cortex.
    Power AJ; Lalor EC; Reilly RB
    Cereb Cortex; 2011 Jun; 21(6):1223-30. PubMed ID: 21068187
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance.
    Stevenson RA; Fister JK; Barnett ZP; Nidiffer AR; Wallace MT
    Exp Brain Res; 2012 May; 219(1):121-37. PubMed ID: 22447249
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hearing impairment induces frequency-specific adjustments in auditory spatial tuning in the optic tectum of young owls.
    Gold JI; Knudsen EI
    J Neurophysiol; 1999 Nov; 82(5):2197-209. PubMed ID: 10561399
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Visual modulation of auditory responses in the owl inferior colliculus.
    Bergan JF; Knudsen EI
    J Neurophysiol; 2009 Jun; 101(6):2924-33. PubMed ID: 19321633
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Oscillatory alpha-band mechanisms and the deployment of spatial attention to anticipated auditory and visual target locations: supramodal or sensory-specific control mechanisms?
    Banerjee S; Snyder AC; Molholm S; Foxe JJ
    J Neurosci; 2011 Jul; 31(27):9923-32. PubMed ID: 21734284
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A neural network model of ventriloquism effect and aftereffect.
    Magosso E; Cuppini C; Ursino M
    PLoS One; 2012; 7(8):e42503. PubMed ID: 22880007
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Approaching the Ground Truth: Revealing the Functional Organization of Human Multisensory STC Using Ultra-High Field fMRI.
    Gentile F; van Atteveldt N; De Martino F; Goebel R
    J Neurosci; 2017 Oct; 37(42):10104-10113. PubMed ID: 28912157
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The spread of attention across modalities and space in a multisensory object.
    Busse L; Roberts KC; Crist RE; Weissman DH; Woldorff MG
    Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18751-6. PubMed ID: 16339900
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multisensory integration in hemianopia and unilateral spatial neglect: Evidence from the sound induced flash illusion.
    Bolognini N; Convento S; Casati C; Mancini F; Brighina F; Vallar G
    Neuropsychologia; 2016 Jul; 87():134-143. PubMed ID: 27197073
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stimulus-driven competition in a cholinergic midbrain nucleus.
    Asadollahi A; Mysore SP; Knudsen EI
    Nat Neurosci; 2010 Jul; 13(7):889-95. PubMed ID: 20526331
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Population-wide bias of surround suppression in auditory spatial receptive fields of the owl's midbrain.
    Wang Y; Shanbhag SJ; Fischer BJ; Peña JL
    J Neurosci; 2012 Aug; 32(31):10470-8. PubMed ID: 22855796
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rules of competitive stimulus selection in a cholinergic isthmic nucleus of the owl midbrain.
    Asadollahi A; Mysore SP; Knudsen EI
    J Neurosci; 2011 Apr; 31(16):6088-97. PubMed ID: 21508234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stimulus-specific adaptation, habituation and change detection in the gaze control system.
    Gutfreund Y
    Biol Cybern; 2012 Dec; 106(11-12):657-68. PubMed ID: 22711216
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatial attention modulates sound localization in barn owls.
    Johnen A; Wagner H; Gaese BH
    J Neurophysiol; 2001 Feb; 85(2):1009-12. PubMed ID: 11160532
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Orienting of spatial attention and the interplay between the senses.
    Macaluso E
    Cortex; 2010 Mar; 46(3):282-97. PubMed ID: 19540475
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Space-independent modality-driven attentional capture in auditory, tactile and visual systems.
    Turatto M; Galfano G; Bridgeman B; Umiltà C
    Exp Brain Res; 2004 Apr; 155(3):301-10. PubMed ID: 14658019
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Right hemisphere dominance for auditory attention and its modulation by eye position: an event related fMRI study.
    Petit L; Simon G; Joliot M; Andersson F; Bertin T; Zago L; Mellet E; Tzourio-Mazoyer N
    Restor Neurol Neurosci; 2007; 25(3-4):211-25. PubMed ID: 17943000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.