These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25220860)

  • 1. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research.
    Park JW; Na SC; Nguyen TQ; Paik SM; Kang M; Hong D; Choi IS; Lee JH; Jeon NL
    Biotechnol Bioeng; 2015 Mar; 112(3):494-501. PubMed ID: 25220860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A droplet microfluidics platform for rapid microalgal growth and oil production analysis.
    Kim HS; Guzman AR; Thapa HR; Devarenne TP; Han A
    Biotechnol Bioeng; 2016 Aug; 113(8):1691-701. PubMed ID: 26724784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman spectroscopy compatible PDMS droplet microfluidic culture and analysis platform towards on-chip lipidomics.
    Kim HS; Waqued SC; Nodurft DT; Devarenne TP; Yakovlev VV; Han A
    Analyst; 2017 Apr; 142(7):1054-1060. PubMed ID: 28294227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-throughput microfluidic single-cell screening platform capable of selective cell extraction.
    Kim HS; Devarenne TP; Han A
    Lab Chip; 2015 Jun; 15(11):2467-75. PubMed ID: 25939721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An array microhabitat system for high throughput studies of microalgal growth under controlled nutrient gradients.
    Kim BJ; Richter LV; Hatter N; Tung CK; Ahner BA; Wu M
    Lab Chip; 2015; 15(18):3687-94. PubMed ID: 26248065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet electroporation in microfluidics for efficient cell transformation with or without cell wall removal.
    Qu B; Eu YJ; Jeong WJ; Kim DP
    Lab Chip; 2012 Nov; 12(21):4483-8. PubMed ID: 22976563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated microfluidic device for the high-throughput screening of microalgal cell culture conditions that induce high growth rate and lipid content.
    Bae S; Kim CW; Choi JS; Yang JW; Seo TS
    Anal Bioanal Chem; 2013 Nov; 405(29):9365-74. PubMed ID: 24170268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated microfluidic platform for multiple processes from microalgal culture to lipid extraction.
    Lim HS; Kim JY; Kwak HS; Sim SJ
    Anal Chem; 2014 Sep; 86(17):8585-92. PubMed ID: 25090444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the mechanisms of lipid extraction from microalga Chlamydomonas reinhardtii after electrical field solicitations and mechanical stress within a microfluidic device.
    Bensalem S; Lopes F; Bodénès P; Pareau D; Français O; Le Pioufle B
    Bioresour Technol; 2018 Jun; 257():129-136. PubMed ID: 29494840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Culturing and investigation of stress-induced lipid accumulation in microalgae using a microfluidic device.
    Holcomb RE; Mason LJ; Reardon KF; Cropek DM; Henry CS
    Anal Bioanal Chem; 2011 Apr; 400(1):245-53. PubMed ID: 21311874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling gas/liquid exchange using microfluidics for real-time monitoring of flagellar length in living Chlamydomonas at the single-cell level.
    Ai X; Liang Q; Luo M; Zhang K; Pan J; Luo G
    Lab Chip; 2012 Nov; 12(21):4516-22. PubMed ID: 22968631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital quantification and selection of high-lipid-producing microalgae through a lateral dielectrophoresis-based microfluidic platform.
    Han SI; Kim HS; Han KH; Han A
    Lab Chip; 2019 Dec; 19(24):4128-4138. PubMed ID: 31755503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic approach to study variations in
    Rahnama A; Vaithiyanathan M; Briceno-Mena L; Dugas TM; Yates KL; Romagnoli JA; Melvin AT
    Analyst; 2024 Aug; 149(16):4256-4266. PubMed ID: 38895826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy.
    Guo B; Lei C; Kobayashi H; Ito T; Yalikun Y; Jiang Y; Tanaka Y; Ozeki Y; Goda K
    Cytometry A; 2017 May; 91(5):494-502. PubMed ID: 28399328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo O2 measurement inside single photosynthetic cells.
    Bai SJ; Ryu W; Fasching RJ; Grossman AR; Prinz FB
    Biotechnol Lett; 2011 Aug; 33(8):1675-81. PubMed ID: 21476096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient and scalable extraction and quantification method for algal derived biofuel.
    Lohman EJ; Gardner RD; Halverson L; Macur RE; Peyton BM; Gerlach R
    J Microbiol Methods; 2013 Sep; 94(3):235-44. PubMed ID: 23810969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted knockout of phospholipase A
    Shin YS; Jeong J; Nguyen THT; Kim JYH; Jin E; Sim SJ
    Bioresour Technol; 2019 Jan; 271():368-374. PubMed ID: 30293032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii.
    Cakmak T; Angun P; Demiray YE; Ozkan AD; Elibol Z; Tekinay T
    Biotechnol Bioeng; 2012 Aug; 109(8):1947-57. PubMed ID: 22383222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging.
    Park MC; Hur JY; Cho HS; Park SH; Suh KY
    Lab Chip; 2011 Jan; 11(1):79-86. PubMed ID: 20957290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct lipid extraction from wet Chlamydomonas reinhardtii biomass using osmotic shock.
    Yoo G; Park WK; Kim CW; Choi YE; Yang JW
    Bioresour Technol; 2012 Nov; 123():717-22. PubMed ID: 22939599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.