These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 25220860)
21. Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis. Kim JY; Kwak HS; Sung YJ; Choi HI; Hong ME; Lim HS; Lee JH; Lee SY; Sim SJ Sci Rep; 2016 Feb; 6():21155. PubMed ID: 26852806 [TBL] [Abstract][Full Text] [Related]
22. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Park WK; Yoo G; Moon M; Kim CW; Choi YE; Yang JW Appl Biochem Biotechnol; 2013 Nov; 171(5):1128-42. PubMed ID: 23881782 [TBL] [Abstract][Full Text] [Related]
23. High-throughput droplet microfluidics screening platform for selecting fast-growing and high lipid-producing microalgae from a mutant library. Kim HS; Hsu SC; Han SI; Thapa HR; Guzman AR; Browne DR; Tatli M; Devarenne TP; Stern DB; Han A Plant Direct; 2017 Sep; 1(3):e00011. PubMed ID: 31245660 [TBL] [Abstract][Full Text] [Related]
24. Raman spectroscopy provides a rapid, non-invasive method for quantitation of starch in live, unicellular microalgae. Ji Y; He Y; Cui Y; Wang T; Wang Y; Li Y; Huang WE; Xu J Biotechnol J; 2014 Dec; 9(12):1512-8. PubMed ID: 24906189 [TBL] [Abstract][Full Text] [Related]
25. Droplet microfluidics--a tool for single-cell analysis. Joensson HN; Andersson Svahn H Angew Chem Int Ed Engl; 2012 Dec; 51(49):12176-92. PubMed ID: 23180509 [TBL] [Abstract][Full Text] [Related]
26. Quantitative tracking of the growth of individual algal cells in microdroplet compartments. Pan J; Stephenson AL; Kazamia E; Huck WT; Dennis JS; Smith AG; Abell C Integr Biol (Camb); 2011 Oct; 3(10):1043-51. PubMed ID: 21863189 [TBL] [Abstract][Full Text] [Related]
27. Microfluidic Platforms Designed for Morphological and Photosynthetic Investigations of Széles E; Nagy K; Ábrahám Á; Kovács S; Podmaniczki A; Nagy V; Kovács L; Galajda P; Tóth SZ Cells; 2022 Jan; 11(2):. PubMed ID: 35053401 [No Abstract] [Full Text] [Related]
28. Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two Chlamydomonas reinhardtii strains of interest for biofuels engineering. Wang H; Alvarez S; Hicks LM J Proteome Res; 2012 Jan; 11(1):487-501. PubMed ID: 22059437 [TBL] [Abstract][Full Text] [Related]
29. High frequency dielectrophoretic response of microalgae over time. Hadady H; Wong JJ; Hiibel SR; Redelman D; Geiger EJ Electrophoresis; 2014 Dec; 35(24):3533-40. PubMed ID: 25229637 [TBL] [Abstract][Full Text] [Related]
30. Induction of triacylglycerol production in Chlamydomonas reinhardtii: comparative analysis of different element regimes. Çakmak ZE; Ölmez TT; Çakmak T; Menemen Y; Tekinay T Bioresour Technol; 2014 Mar; 155():379-87. PubMed ID: 24472680 [TBL] [Abstract][Full Text] [Related]
33. Detection of algal lipid accumulation due to nitrogen limitation via dielectric spectroscopy of Chlamydomonas reinhardtii suspensions in a coaxial transmission line sample cell. Bono MS; Ahner BA; Kirby BJ Bioresour Technol; 2013 Sep; 143():623-31. PubMed ID: 23845710 [TBL] [Abstract][Full Text] [Related]
34. Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms. Zhang Q; Wang T; Zhou Q; Zhang P; Gong Y; Gou H; Xu J; Ma B Sci Rep; 2017 Jan; 7():41192. PubMed ID: 28112223 [TBL] [Abstract][Full Text] [Related]
35. Automated analysis of dynamic behavior of single cells in picoliter droplets. Khorshidi MA; Rajeswari PK; Wählby C; Joensson HN; Andersson Svahn H Lab Chip; 2014 Mar; 14(5):931-7. PubMed ID: 24385254 [TBL] [Abstract][Full Text] [Related]
36. Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures. Laurinavichene TV; Kosourov SN; Ghirardi ML; Seibert M; Tsygankov AA J Biotechnol; 2008 Apr; 134(3-4):275-7. PubMed ID: 18294717 [TBL] [Abstract][Full Text] [Related]
37. Comparative proteomics using lipid over-producing or less-producing mutants unravels lipid metabolisms in Chlamydomonas reinhardtii. Choi YE; Hwang H; Kim HS; Ahn JW; Jeong WJ; Yang JW Bioresour Technol; 2013 Oct; 145():108-15. PubMed ID: 23582219 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of intracellular lipid bodies in Chlamydomonas reinhardtii strains by flow cytometry. Velmurugan N; Sung M; Yim SS; Park MS; Yang JW; Jeong KJ Bioresour Technol; 2013 Jun; 138():30-7. PubMed ID: 23612159 [TBL] [Abstract][Full Text] [Related]
39. In situ analysis of heterogeneity in the lipid content of single green microalgae in alginate hydrogel microcapsules. Lee DH; Bae CY; Han JI; Park JK Anal Chem; 2013 Sep; 85(18):8749-56. PubMed ID: 24007509 [TBL] [Abstract][Full Text] [Related]
40. Development of a novel microfluidic device for long-term in situ monitoring of live cells in 3-dimensional matrices. Dånmark S; Gladnikoff M; Frisk T; Zelenina M; Mustafa K; Russom A; Finne-Wistrand A Biomed Microdevices; 2012 Oct; 14(5):885-93. PubMed ID: 22714394 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]