These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model. Du H; Guo L; Yan S; Sosunov AA; McKhann GM; Yan SS Proc Natl Acad Sci U S A; 2010 Oct; 107(43):18670-5. PubMed ID: 20937894 [TBL] [Abstract][Full Text] [Related]
9. Metabolic Characterization of Intact Cells Reveals Intracellular Amyloid Beta but Not Its Precursor Protein to Reduce Mitochondrial Respiration. Schaefer PM; von Einem B; Walther P; Calzia E; von Arnim CA PLoS One; 2016; 11(12):e0168157. PubMed ID: 28005987 [TBL] [Abstract][Full Text] [Related]
10. The Role of Mitochondrial Impairment in Alzheimer´s Disease Neurodegeneration: The Tau Connection. Quntanilla RA; Tapia-Monsalves C Curr Neuropharmacol; 2020; 18(11):1076-1091. PubMed ID: 32448104 [TBL] [Abstract][Full Text] [Related]
11. β-Amyloid and the Pathomechanisms of Alzheimer's Disease: A Comprehensive View. Penke B; Bogár F; Fülöp L Molecules; 2017 Oct; 22(10):. PubMed ID: 28994715 [TBL] [Abstract][Full Text] [Related]
12. Amyloid precursor protein processing and bioenergetics. Wilkins HM; Swerdlow RH Brain Res Bull; 2017 Jul; 133():71-79. PubMed ID: 27545490 [TBL] [Abstract][Full Text] [Related]
13. Mitochondrial dysfunction and accumulation of the β-secretase-cleaved C-terminal fragment of APP in Alzheimer's disease transgenic mice. Devi L; Ohno M Neurobiol Dis; 2012 Jan; 45(1):417-24. PubMed ID: 21933711 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial permeability transition pore in Alzheimer's disease: cyclophilin D and amyloid beta. Du H; Yan SS Biochim Biophys Acta; 2010 Jan; 1802(1):198-204. PubMed ID: 19616093 [TBL] [Abstract][Full Text] [Related]
15. Exploring the role of mitochondrial proteins as molecular target in Alzheimer's disease. Chadha S; Behl T; Sehgal A; Kumar A; Bungau S Mitochondrion; 2021 Jan; 56():62-72. PubMed ID: 33221353 [TBL] [Abstract][Full Text] [Related]
16. Mitochondria-targeted catalase reduces abnormal APP processing, amyloid β production and BACE1 in a mouse model of Alzheimer's disease: implications for neuroprotection and lifespan extension. Mao P; Manczak M; Calkins MJ; Truong Q; Reddy TP; Reddy AP; Shirendeb U; Lo HH; Rabinovitch PS; Reddy PH Hum Mol Genet; 2012 Jul; 21(13):2973-90. PubMed ID: 22492996 [TBL] [Abstract][Full Text] [Related]
17. Exploring the Potential of Therapeutic Agents Targeted towards Mitigating the Events Associated with Amyloid-β Cascade in Alzheimer's Disease. Behl T; Kaur I; Fratila O; Brata R; Bungau S Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050199 [TBL] [Abstract][Full Text] [Related]
18. Link between the unfolded protein response and dysregulation of mitochondrial bioenergetics in Alzheimer's disease. Poirier Y; Grimm A; Schmitt K; Eckert A Cell Mol Life Sci; 2019 Apr; 76(7):1419-1431. PubMed ID: 30683981 [TBL] [Abstract][Full Text] [Related]
19. Metformin increases APP expression and processing via oxidative stress, mitochondrial dysfunction and NF-κB activation: Use of insulin to attenuate metformin's effect. Picone P; Nuzzo D; Caruana L; Messina E; Barera A; Vasto S; Di Carlo M Biochim Biophys Acta; 2015 May; 1853(5):1046-59. PubMed ID: 25667085 [TBL] [Abstract][Full Text] [Related]
20. Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation. Leuner K; Schütt T; Kurz C; Eckert SH; Schiller C; Occhipinti A; Mai S; Jendrach M; Eckert GP; Kruse SE; Palmiter RD; Brandt U; Dröse S; Wittig I; Willem M; Haass C; Reichert AS; Müller WE Antioxid Redox Signal; 2012 Jun; 16(12):1421-33. PubMed ID: 22229260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]