These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
642 related articles for article (PubMed ID: 25221793)
1. Detection of DNA using an "off-on" switch of a regenerating biosensor based on an electron transfer mechanism from glutathione-capped CdTe quantum dots to nile blue. Shen Y; Liu S; Kong L; Tan X; He Y; Yang J Analyst; 2014 Nov; 139(22):5858-67. PubMed ID: 25221793 [TBL] [Abstract][Full Text] [Related]
2. Detection of DNA utilizing a fluorescent reversible change of a biosensor based on the electron transfer from quantum dots to polymyxin B sulfate. Wang L; Liu S; Liang W; Li D; Yang J; He Y J Colloid Interface Sci; 2015 Jun; 448():257-64. PubMed ID: 25744859 [TBL] [Abstract][Full Text] [Related]
3. Detection of glutathione with an "off-on" fluorescent biosensor based on N-acetyl-L-cysteine capped CdTe quantum dots. Tan X; Yang J; Li Q; Yang Q Analyst; 2015 Oct; 140(19):6748-57. PubMed ID: 26332659 [TBL] [Abstract][Full Text] [Related]
4. Studying the interaction between CdTe quantum dots and Nile blue by absorption, fluorescence and resonance Rayleigh scattering spectra. Peng JJ; Liu SP; Wang L; He YQ Spectrochim Acta A Mol Biomol Spectrosc; 2010 May; 75(5):1571-6. PubMed ID: 20227334 [TBL] [Abstract][Full Text] [Related]
5. Fluorescence quenching investigation on the interaction of glutathione-CdTe/CdS quantum dots with sanguinarine and its analytical application. Shen Y; Liu S; He Y Luminescence; 2014 Mar; 29(2):176-82. PubMed ID: 23640753 [TBL] [Abstract][Full Text] [Related]
6. Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole. Li Q; Tan X; Li J; Pan L; Liu X Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 141():10-5. PubMed ID: 25659737 [TBL] [Abstract][Full Text] [Related]
7. Sensitive detection of sodium cromoglycate with glutathione-capped CdTe quantum dots as a novel fluorescence probe. Hao C; Liu S; Li D; Yang J; He Y Luminescence; 2015 Nov; 30(7):1112-8. PubMed ID: 25683844 [TBL] [Abstract][Full Text] [Related]
8. Reaction analysis on Yb(3+) and DNA based on quantum dots: The design of a fluorescent reversible off-on mode. Wang L; Song J; Liu S; Hao C; Kuang N; He Y J Colloid Interface Sci; 2015 Nov; 457():162-8. PubMed ID: 26164248 [TBL] [Abstract][Full Text] [Related]
9. A sensitive quantum dots-based "OFF-ON" fluorescent sensor for ruthenium anticancer drugs and ctDNA. Huang S; Zhu F; Qiu H; Xiao Q; Zhou Q; Su W; Hu B Colloids Surf B Biointerfaces; 2014 May; 117():240-7. PubMed ID: 24657609 [TBL] [Abstract][Full Text] [Related]
10. Sensitive determination of enoxacin in pharmaceutical formulations by its quench effect on the fluorescence of glutathione-capped CdTe quantum dots. Yang Q; Tan X; Yang J Luminescence; 2016 Feb; 31(1):241-6. PubMed ID: 26105709 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence enhancement of glutathione capped CdTe/ZnS quantum dots by embedding into cationic starch for sensitive detection of rifampicin. Hooshyar Z; Bardajee GR Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():144-150. PubMed ID: 27639201 [TBL] [Abstract][Full Text] [Related]
12. A Fluorescent Switch Sensor for Glutathione Detection Based on Mn-doped CdTe Quantum Dots - Methyl Viologen Nanohybrids. Yu L; Li L; Ding Y; Lu Y J Fluoresc; 2016 Mar; 26(2):651-60. PubMed ID: 26780768 [TBL] [Abstract][Full Text] [Related]
13. Ni2+-modulated homocysteine-capped CdTe quantum dots as a turn-on photoluminescent sensor for detecting histidine in biological fluids. Wu P; Yan XP Biosens Bioelectron; 2010 Oct; 26(2):485-90. PubMed ID: 20708916 [TBL] [Abstract][Full Text] [Related]
14. Cathodic stripping synthesis and cytotoxity studies of glutathione-capped CdTe quantum dots. Ge C; Zhao Y; Hui J; Zhang T; Miao W; Yu W J Nanosci Nanotechnol; 2011 Aug; 11(8):6710-7. PubMed ID: 22103072 [TBL] [Abstract][Full Text] [Related]
15. Hydrothermal synthesis of GSH-TGA co-capped CdTe quantum dots and their application in labeling colorectal cancer cells. Yu Y; Xu L; Chen J; Gao H; Wang S; Fang J; Xu S Colloids Surf B Biointerfaces; 2012 Jun; 95():247-53. PubMed ID: 22494668 [TBL] [Abstract][Full Text] [Related]
16. Highly sensitive fluorescence biosensors for sparfloxacin detection at nanogram level based on electron transfer mechanism of cadmium telluride quantum dots. Liang W; Liu S; Song J; Hao C; Wang L; Li D; He Y Biotechnol Lett; 2015 May; 37(5):1057-61. PubMed ID: 25604522 [TBL] [Abstract][Full Text] [Related]
17. Switch-on fluorescent strategy based on crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione in water and urine. Sheng Z; Chen L Anal Bioanal Chem; 2017 Oct; 409(26):6081-6090. PubMed ID: 28799001 [TBL] [Abstract][Full Text] [Related]
18. A simple and rapid label-free fluorimetric biosensor for protamine detection based on glutathione-capped CdTe quantum dots aggregation. Ensafi AA; Kazemifard N; Rezaei B Biosens Bioelectron; 2015 Sep; 71():243-248. PubMed ID: 25912680 [TBL] [Abstract][Full Text] [Related]
19. Effect of CdTe quantum dots size on the conformational changes of human serum albumin: results of spectroscopy and isothermal titration calorimetry. Yang B; Liu R; Hao X; Wu Y; Du J Biol Trace Elem Res; 2013 Oct; 155(1):150-8. PubMed ID: 23904329 [TBL] [Abstract][Full Text] [Related]
20. Molecular spectroscopic studies on the interactions of rhein and emodin with thioglycolic acid-capped core/shell CdTe/CdS quantum dots and their analytical applications. Li D; Liu S; Shen Y; Yang J; He Y Luminescence; 2015 Feb; 30(1):60-6. PubMed ID: 24850622 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]