These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 25221850)

  • 21. Energetics of a simple microscopic heat engine.
    Asfaw M; Bekele M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056109. PubMed ID: 16383690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases.
    Chen L; Meng Z; Ge Y; Wu F
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The power of a critical heat engine.
    Campisi M; Fazio R
    Nat Commun; 2016 Jun; 7():11895. PubMed ID: 27320127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Minimal universal quantum heat machine.
    Gelbwaser-Klimovsky D; Alicki R; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012140. PubMed ID: 23410316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficiency at maximum power of thermally coupled heat engines.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041144. PubMed ID: 22680454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Finite-Size Heat Source's Heat Capacity on the Efficiency of Heat Engine.
    Ma YH
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model.
    Park JM; Chun HM; Noh JD
    Phys Rev E; 2016 Jul; 94(1-1):012127. PubMed ID: 27575096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carnot efficiency is reachable in an irreversible process.
    Lee JS; Park H
    Sci Rep; 2017 Sep; 7(1):10725. PubMed ID: 28878219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A quantum-dot heat engine operating close to the thermodynamic efficiency limits.
    Josefsson M; Svilans A; Burke AM; Hoffmann EA; Fahlvik S; Thelander C; Leijnse M; Linke H
    Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021133. PubMed ID: 23005748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficiency of single-particle engines.
    Proesmans K; Driesen C; Cleuren B; Van den Broeck C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032105. PubMed ID: 26465424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stochastic pumping of heat: approaching the Carnot efficiency.
    Segal D
    Phys Rev Lett; 2008 Dec; 101(26):260601. PubMed ID: 19113763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Weighted reciprocal of temperature, weighted thermal flux, and their applications in finite-time thermodynamics.
    Sheng S; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012129. PubMed ID: 24580194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Geometric Bound on the Efficiency of Irreversible Thermodynamic Cycles.
    Frim AG; DeWeese MR
    Phys Rev Lett; 2022 Jun; 128(23):230601. PubMed ID: 35749204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum engine efficiency bound beyond the second law of thermodynamics.
    Niedenzu W; Mukherjee V; Ghosh A; Kofman AG; Kurizki G
    Nat Commun; 2018 Jan; 9(1):165. PubMed ID: 29323109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature fluctuations in mesoscopic systems.
    Fei Z; Ma YH
    Phys Rev E; 2024 Apr; 109(4-1):044101. PubMed ID: 38755872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines.
    Pietzonka P; Seifert U
    Phys Rev Lett; 2018 May; 120(19):190602. PubMed ID: 29799237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum thermodynamic cycles and quantum heat engines.
    Quan HT; Liu YX; Sun CP; Nori F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031105. PubMed ID: 17930197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficiency at and near maximum power of low-dissipation heat engines.
    Holubec V; Ryabov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052125. PubMed ID: 26651665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.