These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25222141)

  • 1. Three-wave electron vortex lattices for measuring nanofields.
    Dwyer C; Boothroyd CB; Chang SLY; Dunin-Borkowski RE
    Ultramicroscopy; 2015 Jan; 148():25-30. PubMed ID: 25222141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Goal-driven method for decoding the configuration of coherent wave groups required for the generation of arbitrary-order vortex lattices.
    Liu K; Zhang H; Dong X; Liu Z
    Opt Express; 2021 Apr; 29(8):11793-11818. PubMed ID: 33984954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creating arrays of electron vortices.
    Niermann T; Verbeeck J; Lehmann M
    Ultramicroscopy; 2014 Jan; 136():165-70. PubMed ID: 24184391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical lattices and optical vortex arrays in clustered speckles.
    He C; Ma L; Zhang R; Li X; Zhang Y; Cheng C
    Opt Express; 2018 Aug; 26(16):20550-20561. PubMed ID: 30119364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realization of a tilted reference wave for electron holography by means of a condenser biprism.
    Röder F; Houdellier F; Denneulin T; Snoeck E; Hÿtch M
    Ultramicroscopy; 2016 Feb; 161():23-40. PubMed ID: 26624513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creation of vortex lattices by a wavefront division.
    Masajada J; Popiolek-Masajada A; Leniec M
    Opt Express; 2007 Apr; 15(8):5196-207. PubMed ID: 19532771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine electron biprism on a Si-on-insulator chip for off-axis electron holography.
    Duchamp M; Girard O; Pozzi G; Soltner H; Winkler F; Speen R; Dunin-Borkowski RE; Cooper D
    Ultramicroscopy; 2018 Feb; 185():81-89. PubMed ID: 29223803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of electrostatic microfields by four-electron-wave interference using two electron biprisms.
    Miyashita K; Yamamoto K; Hirayama T; Tanji T
    J Electron Microsc (Tokyo); 2004; 53(6):577-82. PubMed ID: 15582969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical creation of fractionalized vortices and vortex lattices.
    Ji AC; Liu WM; Song JL; Zhou F
    Phys Rev Lett; 2008 Jul; 101(1):010402. PubMed ID: 18764092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vortices and vortex lattices in quantum ferrofluids.
    Martin AM; Marchant NG; O'Dell DH; Parker NG
    J Phys Condens Matter; 2017 Mar; 29(10):103004. PubMed ID: 28145899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vortex Lattices in the Bose-Fermi Superfluid Mixture.
    Jiang Y; Qi R; Shi ZY; Zhai H
    Phys Rev Lett; 2017 Feb; 118(8):080403. PubMed ID: 28282164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical system for double-biprism electron holography.
    Harada K; Akashi T; Togawa Y; Matsuda T; Tonomura A
    J Electron Microsc (Tokyo); 2005 Jan; 54(1):19-27. PubMed ID: 15695481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Singularimetry of local phase gradients using vortex lattices and in-line holography.
    Petersen TC; Bishop AI; Eastwood SA; Paganin DM; Morgan KS; Morgan MJ
    Opt Express; 2016 Feb; 24(3):2259-72. PubMed ID: 26906802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nematically Templated Vortex Lattices in Superconducting FeSe.
    Song SY; Hua C; Bell L; Ko W; Fangohr H; Yan J; Halász GB; Dumitrescu EF; Lawrie BJ; Maksymovych P
    Nano Lett; 2023 Apr; 23(7):2822-2830. PubMed ID: 36940166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pairing and vortex lattices for interacting fermions in optical lattices with a large magnetic field.
    Zhai H; Umucalilar RO; Oktel MO
    Phys Rev Lett; 2010 Apr; 104(14):145301. PubMed ID: 20481943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic flux-line lattices and vortices in the copper oxide superconductors.
    Bishop DJ; Gammel PL; Huse DA; Murray CA
    Science; 1992 Jan; 255(5041):165-72. PubMed ID: 17756066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vortex beam production and contrast enhancement from a magnetic spiral phase plate.
    Blackburn AM; Loudon JC
    Ultramicroscopy; 2014 Jan; 136():127-43. PubMed ID: 24128851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic band gap via quantum coherence in vortex lattices of Bose-Einstein condensates.
    Müstecaplioğlu OE; Oktel MO
    Phys Rev Lett; 2005 Jun; 94(22):220404. PubMed ID: 16090371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical Realization of von Neumann Lattices in Rotating Bose Gases with Dipole Interatomic Interactions.
    Cheng SC; Jheng SD
    Sci Rep; 2016 Aug; 6():31801. PubMed ID: 27545446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of vortex nucleation in a rotating two-dimensional lattice of Bose-Einstein condensates.
    Williams RA; Al-Assam S; Foot CJ
    Phys Rev Lett; 2010 Feb; 104(5):050404. PubMed ID: 20366752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.