BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25222331)

  • 1. Electrochemical degradation of refractory pollutants using TiO2 single crystals exposed by high-energy {001} facets.
    Zhang AY; Long LL; Liu C; Li WW; Yu HQ
    Water Res; 2014 Dec; 66():273-282. PubMed ID: 25222331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous activation of H2O2 by defect-engineered TiO(2-x) single crystals for refractory pollutants degradation: A Fenton-like mechanism.
    Zhang AY; Lin T; He YY; Mou YX
    J Hazard Mater; 2016 Jul; 311():81-90. PubMed ID: 26954479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Electrochemical Reduction of Nitrobenzene by Defect-Engineered TiO2-x Single Crystals.
    Liu C; Zhang AY; Pei DN; Yu HQ
    Environ Sci Technol; 2016 May; 50(10):5234-42. PubMed ID: 27128346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photochemical Anti-Fouling Approach for Electrochemical Pollutant Degradation on Facet-Tailored TiO
    Liu C; Zhang AY; Si Y; Pei DN; Yu HQ
    Environ Sci Technol; 2017 Oct; 51(19):11326-11335. PubMed ID: 28891634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical Sensing of Bisphenol A on Facet-Tailored TiO
    Pei DN; Zhang AY; Pan XQ; Si Y; Yu HQ
    Anal Chem; 2018 Mar; 90(5):3165-3173. PubMed ID: 29461045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced photoelectrocatalytic performance of titanium dioxide/carbon cloth based photoelectrodes by graphene modification under visible-light irradiation.
    Zhai C; Zhu M; Ren F; Yao Z; Du Y; Yang P
    J Hazard Mater; 2013 Dec; 263 Pt 2():291-8. PubMed ID: 24091125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of electrochemical oxidation techniques for degradation of dye effluents--a comparative approach.
    Raghu S; Lee CW; Chellammal S; Palanichamy S; Basha CA
    J Hazard Mater; 2009 Nov; 171(1-3):748-54. PubMed ID: 19592159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Photoelectrocatalytic degradation of Rhodamine B using mesh Ti/TiO2 electrode].
    Liu H; Zhou D; Li X; Yue B
    Huan Jing Ke Xue; 2002 Jul; 23(4):47-51. PubMed ID: 12371102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical treatment of phenol-containing wastewater by facet-tailored TiO
    Liu C; Min Y; Zhang AY; Si Y; Chen JJ; Yu HQ
    Water Res; 2019 Nov; 165():114980. PubMed ID: 31434012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electro-oxidation of organic pollutants by reactive electrochemical membranes.
    Trellu C; Chaplin BP; Coetsier C; Esmilaire R; Cerneaux S; Causserand C; Cretin M
    Chemosphere; 2018 Oct; 208():159-175. PubMed ID: 29864707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New TiO2/C sol-gel electrodes for photoelectrocatalytic degradation of sodium oxalate.
    Egerton TA; Janus M; Morawski AW
    Chemosphere; 2006 May; 63(7):1203-8. PubMed ID: 16337257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ electrochemical and photo-electrochemical generation of the fenton reagent: a potentially important new water treatment technology.
    Peralta-Hernández JM; Meas-Vong Y; Rodríguez FJ; Chapman TW; Maldonado MI; Godínez LA
    Water Res; 2006 May; 40(9):1754-62. PubMed ID: 16626778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of nano TiO(2) towards polluted water treatment combined with electro-photochemical method.
    Chen J; Liu M; Zhang L; Zhang J; Jin L
    Water Res; 2003 Sep; 37(16):3815-20. PubMed ID: 12909099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured TiO2 photocatalysts for the determination of organic pollutants.
    Qiu J; Zhang S; Zhao H
    J Hazard Mater; 2012 Apr; 211-212():381-8. PubMed ID: 22133353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photo-assisted electrochemical detection of bisphenol A in water samples by renewable {001}-exposed TiO
    Si Y; Zhang AY; Liu C; Pei DN; Yu HQ
    Water Res; 2019 Jun; 157():30-39. PubMed ID: 30952006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The different paths and potential risks of photo(-electro)-catalytic degradation for rhodamine B in water by graphene/TiO
    Ren M; Liu H; Qu J; Zhang Y; Ma Y; Yuan X
    Environ Sci Pollut Res Int; 2018 May; 25(14):13988-13999. PubMed ID: 29516424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction.
    Pei DN; Gong L; Zhang AY; Zhang X; Chen JJ; Mu Y; Yu HQ
    Nat Commun; 2015 Oct; 6():8696. PubMed ID: 26493365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electro-photocatalytic degradation of acid orange II using a novel TiO2/ACF photoanode.
    Hou Y; Qu J; Zhao X; Lei P; Wan D; Huang CP
    Sci Total Environ; 2009 Mar; 407(7):2431-9. PubMed ID: 19171372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the hydrothermally synthesized nano-TiO2 crystallite and the photocatalytic degradation of Rhodamine B.
    Asiltürk M; Sayilkan F; Erdemoğlu S; Akarsu M; Sayilkan H; Erdemoğlu M; Arpaç E
    J Hazard Mater; 2006 Feb; 129(1-3):164-70. PubMed ID: 16188382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of photoelectrocatalytic degradation of humic acid using B2O3.TiO2/Ti photoelectrode.
    Yan-li J; Hui-ling L; Chun-mei L
    J Environ Sci (China); 2005; 17(2):208-11. PubMed ID: 16295890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.