These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 25222332)
1. Metabolic modelling of full-scale enhanced biological phosphorus removal sludge. Lanham AB; Oehmen A; Saunders AM; Carvalho G; Nielsen PH; Reis MAM Water Res; 2014 Dec; 66():283-295. PubMed ID: 25222332 [TBL] [Abstract][Full Text] [Related]
2. Metabolic versatility in full-scale wastewater treatment plants performing enhanced biological phosphorus removal. Lanham AB; Oehmen A; Saunders AM; Carvalho G; Nielsen PH; Reis MA Water Res; 2013 Dec; 47(19):7032-41. PubMed ID: 24210547 [TBL] [Abstract][Full Text] [Related]
3. Modelling the population dynamics and metabolic diversity of organisms relevant in anaerobic/anoxic/aerobic enhanced biological phosphorus removal processes. Oehmen A; Lopez-Vazquez CM; Carvalho G; Reis MA; van Loosdrecht MC Water Res; 2010 Aug; 44(15):4473-86. PubMed ID: 20580055 [TBL] [Abstract][Full Text] [Related]
4. Accumulibacter clades Type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake. Welles L; Tian WD; Saad S; Abbas B; Lopez-Vazquez CM; Hooijmans CM; van Loosdrecht MC; Brdjanovic D Water Res; 2015 Oct; 83():354-66. PubMed ID: 26189167 [TBL] [Abstract][Full Text] [Related]
5. The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs). Carvalheira M; Oehmen A; Carvalho G; Reis MAM Water Res; 2014 Nov; 64():149-159. PubMed ID: 25051162 [TBL] [Abstract][Full Text] [Related]
6. A practical method for quantification of phosphorus- and glycogen-accumulating organism populations in activated sludge systems. López-Vázquez CM; Hooijmans CM; Brdjanovic D; Gijzen HJ; van Loosdrecht MC Water Environ Res; 2007 Dec; 79(13):2487-98. PubMed ID: 18198694 [TBL] [Abstract][Full Text] [Related]
7. Model-based analysis of anaerobic acetate uptake by a mixed culture of polyphosphate-accumulating and glycogen-accumulating organisms. Zeng RJ; Yuan Z; Keller J Biotechnol Bioeng; 2003 Aug; 83(3):293-302. PubMed ID: 12783485 [TBL] [Abstract][Full Text] [Related]
8. The impact of aeration on the competition between polyphosphate accumulating organisms and glycogen accumulating organisms. Carvalheira M; Oehmen A; Carvalho G; Eusébio M; Reis MAM Water Res; 2014 Dec; 66():296-307. PubMed ID: 25222333 [TBL] [Abstract][Full Text] [Related]
9. Involvement of the TCA cycle in the anaerobic metabolism of polyphosphate accumulating organisms (PAOs). Zhou Y; Pijuan M; Zeng RJ; Yuan Z Water Res; 2009 Mar; 43(5):1330-40. PubMed ID: 19144373 [TBL] [Abstract][Full Text] [Related]
10. Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)? Zhou Y; Pijuan M; Zeng RJ; Lu H; Yuan Z Water Res; 2008 May; 42(10-11):2361-8. PubMed ID: 18222522 [TBL] [Abstract][Full Text] [Related]
11. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Oehmen A; Yuan Z; Blackall LL; Keller J Biotechnol Bioeng; 2005 Jul; 91(2):162-8. PubMed ID: 15892052 [TBL] [Abstract][Full Text] [Related]
12. Model-based evaluation of competition between polyphosphate- and glycogen-accumulating organisms. Whang LM; Filipe CD; Park JK Water Res; 2007 Mar; 41(6):1312-24. PubMed ID: 17275874 [TBL] [Abstract][Full Text] [Related]
13. The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms. Oehmen A; Teresa Vives M; Lu H; Yuan Z; Keller J Water Res; 2005 Sep; 39(15):3727-37. PubMed ID: 16098556 [TBL] [Abstract][Full Text] [Related]
14. Incorporating microbial ecology into the metabolic modelling of polyphosphate accumulating organisms and glycogen accumulating organisms. Oehmen A; Carvalho G; Lopez-Vazquez CM; van Loosdrecht MC; Reis MA Water Res; 2010 Sep; 44(17):4992-5004. PubMed ID: 20650504 [TBL] [Abstract][Full Text] [Related]
15. Multilevel correlations in the biological phosphorus removal process: From bacterial enrichment to conductivity-based metabolic batch tests and polyphosphatase assays. Weissbrodt DG; Maillard J; Brovelli A; Chabrelie A; May J; Holliger C Biotechnol Bioeng; 2014 Dec; 111(12):2421-35. PubMed ID: 24975745 [TBL] [Abstract][Full Text] [Related]
16. Competition between polyphosphate- and glycogen-accumulating organisms in enhanced-biological-phosphorus-removal systems: effect of temperature and sludge age. Whang LM; Park JK Water Environ Res; 2006 Jan; 78(1):4-11. PubMed ID: 16553160 [TBL] [Abstract][Full Text] [Related]
17. Characterizing the biochemical activity of full-scale enhanced biological phosphorus removal systems: A comparison with metabolic models. Pijuan M; Oehmen A; Baeza JA; Casas C; Yuan Z Biotechnol Bioeng; 2008 Jan; 99(1):170-9. PubMed ID: 17514755 [TBL] [Abstract][Full Text] [Related]
18. Survival strategies of polyphosphate accumulating organisms and glycogen accumulating organisms under conditions of low organic loading. Carvalheira M; Oehmen A; Carvalho G; Reis MAM Bioresour Technol; 2014 Nov; 172():290-296. PubMed ID: 25270044 [TBL] [Abstract][Full Text] [Related]
19. Ecophysiology of a group of uncultured Gammaproteobacterial glycogen-accumulating organisms in full-scale enhanced biological phosphorus removal wastewater treatment plants. Kong Y; Xia Y; Nielsen JL; Nielsen PH Environ Microbiol; 2006 Mar; 8(3):479-89. PubMed ID: 16478454 [TBL] [Abstract][Full Text] [Related]
20. Modelling the metabolic shift of polyphosphate-accumulating organisms. Acevedo B; Borrás L; Oehmen A; Barat R Water Res; 2014 Nov; 65():235-44. PubMed ID: 25123437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]