These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 25222494)
1. The plastid ancestor originated among one of the major cyanobacterial lineages. Ochoa de Alda JA; Esteban R; Diago ML; Houmard J Nat Commun; 2014 Sep; 5():4937. PubMed ID: 25222494 [TBL] [Abstract][Full Text] [Related]
2. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943 [TBL] [Abstract][Full Text] [Related]
3. An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Nelissen B; Van de Peer Y; Wilmotte A; De Wachter R Mol Biol Evol; 1995 Nov; 12(6):1166-73. PubMed ID: 8524048 [TBL] [Abstract][Full Text] [Related]
4. Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids. Keeling PJ Methods Mol Biol; 2009; 532():501-15. PubMed ID: 19271204 [TBL] [Abstract][Full Text] [Related]
5. An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids. Ponce-Toledo RI; Deschamps P; López-García P; Zivanovic Y; Benzerara K; Moreira D Curr Biol; 2017 Feb; 27(3):386-391. PubMed ID: 28132810 [TBL] [Abstract][Full Text] [Related]
6. Dating the cyanobacterial ancestor of the chloroplast. Falcón LI; Magallón S; Castillo A ISME J; 2010 Jun; 4(6):777-83. PubMed ID: 20200567 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Martin W; Rujan T; Richly E; Hansen A; Cornelsen S; Lins T; Leister D; Stoebe B; Hasegawa M; Penny D Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12246-51. PubMed ID: 12218172 [TBL] [Abstract][Full Text] [Related]
8. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended. Nozaki H J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387 [TBL] [Abstract][Full Text] [Related]
9. Horizontal gene transfer in cyanobacterial signature genes. Yerrapragada S; Siefert JL; Fox GE Methods Mol Biol; 2009; 532():339-66. PubMed ID: 19271195 [TBL] [Abstract][Full Text] [Related]
10. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Huang J; Gogarten JP Genome Biol; 2007; 8(6):R99. PubMed ID: 17547748 [TBL] [Abstract][Full Text] [Related]
11. Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes. Maruyama S; Misawa K; Iseki M; Watanabe M; Nozaki H BMC Evol Biol; 2008 May; 8():151. PubMed ID: 18485228 [TBL] [Abstract][Full Text] [Related]
12. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168 [TBL] [Abstract][Full Text] [Related]
13. Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. Douglas SE; Turner S J Mol Evol; 1991 Sep; 33(3):267-73. PubMed ID: 1757997 [TBL] [Abstract][Full Text] [Related]
14. Pyrosequencing of plastid 23S rRNA genes reveals diverse and dynamic cyanobacterial and algal populations in two eutrophic lakes. Steven B; McCann S; Ward NL FEMS Microbiol Ecol; 2012 Dec; 82(3):607-15. PubMed ID: 22680682 [TBL] [Abstract][Full Text] [Related]
15. Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses. Suzuki K; Miyagishima SY Mol Biol Evol; 2010 Mar; 27(3):581-90. PubMed ID: 19910386 [TBL] [Abstract][Full Text] [Related]
16. Cyanobacterial genes transmitted to the nucleus before divergence of red algae in the Chromista. Nozaki H; Matsuzaki M; Misumi O; Kuroiwa H; Hasegawa M; Higashiyama T; Shin-I T; Kohara Y; Ogasawara N; Kuroiwa T J Mol Evol; 2004 Jul; 59(1):103-13. PubMed ID: 15383913 [TBL] [Abstract][Full Text] [Related]
17. Common evolutionary origin of planktonic and benthic nitrogen-fixing oscillatoriacean cyanobacteria from tropical oceans. Abed RM; Palinska KA; Camoin G; Golubic S FEMS Microbiol Lett; 2006 Jul; 260(2):171-7. PubMed ID: 16842341 [TBL] [Abstract][Full Text] [Related]
18. An Expanded Ribosomal Phylogeny of Cyanobacteria Supports a Deep Placement of Plastids. Moore KR; Magnabosco C; Momper L; Gold DA; Bosak T; Fournier GP Front Microbiol; 2019; 10():1612. PubMed ID: 31354692 [TBL] [Abstract][Full Text] [Related]
19. The endosymbiotic origin, diversification and fate of plastids. Keeling PJ Philos Trans R Soc Lond B Biol Sci; 2010 Mar; 365(1541):729-48. PubMed ID: 20124341 [TBL] [Abstract][Full Text] [Related]
20. Was the Chlamydial Adaptative Strategy to Tryptophan Starvation an Early Determinant of Plastid Endosymbiosis? Cenci U; Ducatez M; Kadouche D; Colleoni C; Ball SG Front Cell Infect Microbiol; 2016; 6():67. PubMed ID: 27446814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]