BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25222567)

  • 1. Patterned adhesive enables construction of nonplanar three-dimensional paper microfluidic circuits.
    Kalish B; Tsutsui H
    Lab Chip; 2014 Nov; 14(22):4354-61. PubMed ID: 25222567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Adhesive Patterning to Construct 3D Paper Microfluidic Devices.
    Kalish B; Tsutsui H
    J Vis Exp; 2016 Apr; (110):e53805. PubMed ID: 27077551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional, paper-based microfluidic devices containing internal timers for running time-based diagnostic assays.
    Phillips ST; Thom NK
    Methods Mol Biol; 2013; 949():185-96. PubMed ID: 23329444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional paper microfluidic devices assembled using the principles of origami.
    Liu H; Crooks RM
    J Am Chem Soc; 2011 Nov; 133(44):17564-6. PubMed ID: 22004329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Three-dimensional Paper-based Microfluidic Devices for Immunoassays.
    Fernandes SC; Wilson DJ; Mace CR
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchtop fabrication of three-dimensional reconfigurable microfluidic devices from paper-polymer composite.
    Han YL; Wang W; Hu J; Huang G; Wang S; Lee WG; Lu TJ; Xu F
    Lab Chip; 2013 Dec; 13(24):4745-9. PubMed ID: 24172608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conformal nano-adhesive via initiated chemical vapor deposition for microfluidic devices.
    Im SG; Bong KW; Lee CH; Doyle PS; Gleason KK
    Lab Chip; 2009 Feb; 9(3):411-6. PubMed ID: 19156290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device.
    Ge L; Wang S; Song X; Ge S; Yu J
    Lab Chip; 2012 Sep; 12(17):3150-8. PubMed ID: 22763468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paper and toner three-dimensional fluidic devices: programming fluid flow to improve point-of-care diagnostics.
    Schilling KM; Jauregui D; Martinez AW
    Lab Chip; 2013 Feb; 13(4):628-31. PubMed ID: 23282766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterned cell culture inside microfluidic devices.
    Rhee SW; Taylor AM; Tu CH; Cribbs DH; Cotman CW; Jeon NL
    Lab Chip; 2005 Jan; 5(1):102-7. PubMed ID: 15616747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmable diagnostic devices made from paper and tape.
    Martinez AW; Phillips ST; Nie Z; Cheng CM; Carrilho E; Wiley BJ; Whitesides GM
    Lab Chip; 2010 Oct; 10(19):2499-504. PubMed ID: 20672179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices.
    Hamad EM; Bilatto SE; Adly NY; Correa DS; Wolfrum B; Schöning MJ; Offenhäusser A; Yakushenko A
    Lab Chip; 2016 Jan; 16(1):70-4. PubMed ID: 26627046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Microfluidic drifting"--implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device.
    Mao X; Waldeisen JR; Huang TJ
    Lab Chip; 2007 Oct; 7(10):1260-2. PubMed ID: 17896008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami.
    Govindarajan AV; Ramachandran S; Vigil GD; Yager P; Böhringer KF
    Lab Chip; 2012 Jan; 12(1):174-81. PubMed ID: 22068336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-temperature, simple and fast integration technique of microfluidic chips by using a UV-curable adhesive.
    Arayanarakool R; Le Gac S; van den Berg A
    Lab Chip; 2010 Aug; 10(16):2115-21. PubMed ID: 20556303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes.
    Nath P; Fung D; Kunde YA; Zeytun A; Branch B; Goddard G
    Lab Chip; 2010 Sep; 10(17):2286-91. PubMed ID: 20593077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoelectrochemical sensor for pentachlorophenol on microfluidic paper-based analytical device based on the molecular imprinting technique.
    Sun G; Wang P; Ge S; Ge L; Yu J; Yan M
    Biosens Bioelectron; 2014 Jun; 56():97-103. PubMed ID: 24480129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.