These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 25222600)

  • 21. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison between magnetic and non magnetic multi-walled carbon nanotubes-dispersive solid-phase extraction combined with ultra-high performance liquid chromatography for the determination of sulfonamide antibiotics in water samples.
    Herrera-Herrera AV; Hernández-Borges J; Afonso MM; Palenzuela JA; Rodríguez-Delgado MÁ
    Talanta; 2013 Nov; 116():695-703. PubMed ID: 24148463
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Local modifications of single-wall carbon nanotubes induced by bond formation with encapsulated fullerenes.
    Yumura T; Kertesz M; Iijima S
    J Phys Chem B; 2007 Feb; 111(5):1099-109. PubMed ID: 17266263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unscrolling of multi-walled carbon nanotubes: towards micrometre-scale graphene oxide sheets.
    Wong CH; Pumera M
    Phys Chem Chem Phys; 2013 May; 15(20):7755-9. PubMed ID: 23598744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of the tube diameter distribution on the high-temperature structural modification of bundled single-walled carbon nanotubes.
    Kim UJ; Gutiérrez HR; Kim JP; Eklund PC
    J Phys Chem B; 2005 Dec; 109(49):23358-65. PubMed ID: 16375307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions and reactions of transition metal clusters with the interior of single-walled carbon nanotubes imaged at the atomic scale.
    Zoberbier T; Chamberlain TW; Biskupek J; Kuganathan N; Eyhusen S; Bichoutskaia E; Kaiser U; Khlobystov AN
    J Am Chem Soc; 2012 Feb; 134(6):3073-9. PubMed ID: 22263637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.
    Wan X; Huang Y; Chen Y
    Acc Chem Res; 2012 Apr; 45(4):598-607. PubMed ID: 22280410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O.
    Asai M; Ohba T; Iwanaga T; Kanoh H; Endo M; Campos-Delgado J; Terrones M; Nakai K; Kaneko K
    J Am Chem Soc; 2011 Sep; 133(38):14880-3. PubMed ID: 21870827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlling nanotube dimensions: correlation between composition, diameter, and internal energy of single-walled mixed oxide nanotubes.
    Konduri S; Mukherjee S; Nair S
    ACS Nano; 2007 Dec; 1(5):393-402. PubMed ID: 19206659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dip-pen nanolithography of electrical contacts to single-walled carbon nanotubes.
    Wang WM; LeMieux MC; Selvarasah S; Dokmeci MR; Bao Z
    ACS Nano; 2009 Nov; 3(11):3543-51. PubMed ID: 19852486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogenation, purification, and unzipping of carbon nanotubes by reaction with molecular hydrogen: road to graphane nanoribbons.
    Talyzin AV; Luzan S; Anoshkin IV; Nasibulin AG; Jiang H; Kauppinen EI; Mikoushkin VM; Shnitov VV; Marchenko DE; Noréus D
    ACS Nano; 2011 Jun; 5(6):5132-40. PubMed ID: 21504190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coronene encapsulation in single-walled carbon nanotubes: stacked columns, peapods, and nanoribbons.
    Anoshkin IV; Talyzin AV; Nasibulin AG; Krasheninnikov AV; Jiang H; Nieminen RM; Kauppinen EI
    Chemphyschem; 2014 Jun; 15(8):1660-5. PubMed ID: 24729536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectroscopic characterization of the chiral structure of individual single-walled carbon nanotubes and the edge structure of isolated graphene nanoribbons.
    Zhang D; Yang J; Li Y
    Small; 2013 Apr; 9(8):1284-304. PubMed ID: 23529997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrathin single-walled carbon nanotube network framed graphene hybrids.
    Wang R; Hong T; Xu YQ
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5233-8. PubMed ID: 25686199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of single-walled carbon nanotubes on lysozyme gelation.
    Tardani F; La Mesa C
    Colloids Surf B Biointerfaces; 2014 Sep; 121():165-70. PubMed ID: 24975732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reversible attachment of platinum alloy nanoparticles to nonfunctionalized carbon nanotubes.
    Ritz B; Heller H; Myalitsin A; Kornowski A; Martin-Martinez FJ; Melchor S; Dobado JA; Juárez BH; Weller H; Klinke C
    ACS Nano; 2010 Apr; 4(4):2438-44. PubMed ID: 20205413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of polyynes to model the sp-carbon allotrope carbyne.
    Chalifoux WA; Tykwinski RR
    Nat Chem; 2010 Nov; 2(11):967-71. PubMed ID: 20966954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interacting quasi-two-dimensional sheets of interlinked carbon nanotubes: a high-pressure phase of carbon.
    Saxena S; Tyson TA
    ACS Nano; 2010 Jun; 4(6):3515-21. PubMed ID: 20446666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlled fabrication of intermolecular junctions of single-walled carbon nanotube/graphene nanoribbon.
    Yu F; Zhou H; Zhang Z; Wang G; Yang H; Chen M; Tao L; Tang D; He J; Sun L
    Small; 2013 Jul; 9(14):2405-9. PubMed ID: 23650121
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergistic increase of oxygen reduction favourable Fe-N coordination structures in a ternary hybrid of carbon nanospheres/carbon nanotubes/graphene sheets.
    Zhang S; Liu B; Chen S
    Phys Chem Chem Phys; 2013 Nov; 15(42):18482-90. PubMed ID: 24071648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.