These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25222622)

  • 1. The kinetics and QSAR of abiotic reduction of mononitro aromatic compounds catalyzed by activated carbon.
    Gong W; Liu X; Gao D; Yu Y; Fu W; Cheng D; Cui B; Bai J
    Chemosphere; 2015 Jan; 119():835-840. PubMed ID: 25222622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of gas-phase reaction rate constants of alkylnaphthalenes with chlorine, hydroxyl and nitrate radicals.
    Long X; Niu J
    Chemosphere; 2007 May; 67(10):2028-34. PubMed ID: 17239921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel model to predict gas-phase hydroxyl radical oxidation kinetics of polychlorinated compounds.
    Luo S; Wei Z; Spinney R; Yang Z; Chai L; Xiao R
    Chemosphere; 2017 Apr; 172():333-340. PubMed ID: 28088023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of carbon black to catalyze the reduction of nitrobenzenes by sulfides.
    Yu X; Gong W; Liu X; Shi L; Han X; Bao H
    J Hazard Mater; 2011 Dec; 198():340-6. PubMed ID: 22078492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The uridine diphosphate glucuronosyltransferases: quantitative structure-activity relationships for hydroxyl polychlorinated biphenyl substrates.
    Wang D
    Arch Toxicol; 2005 Oct; 79(10):554-60. PubMed ID: 15889236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSAR and SAR studies on the reduction of some aromatic nitro compounds by xanthine oxidase.
    Thakur M; Thakur A; Balasubramanian K
    J Chem Inf Model; 2006; 46(1):103-10. PubMed ID: 16426045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of rate constants for radical degradation of aromatic pollutants in water matrix: a QSAR study.
    Kusić H; Rasulev B; Leszczynska D; Leszczynski J; Koprivanac N
    Chemosphere; 2009 May; 75(8):1128-34. PubMed ID: 19201442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSAR modeling of algal low level toxicity values of different phenol and aniline derivatives using 2D descriptors.
    Seth A; Roy K
    Aquat Toxicol; 2020 Nov; 228():105627. PubMed ID: 32956953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-toxicity relationships of nitroaromatic compounds.
    Isayev O; Rasulev B; Gorb L; Leszczynski J
    Mol Divers; 2006 May; 10(2):233-45. PubMed ID: 16710810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative structure-property relationship study on reductive dehalogenation of selected halogenated aliphatic hydrocarbons in sediment slurries.
    Zhao H; Chen J; Quan X; Yang F; Peijnenburg WJ
    Chemosphere; 2001 Sep; 44(7):1557-63. PubMed ID: 11545521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative structure-activity analysis of the algae toxicity of nitroaromatic compounds.
    Schmitt H; Altenburger R; Jastorff B; Schüürmann G
    Chem Res Toxicol; 2000 Jun; 13(6):441-50. PubMed ID: 10858317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative structure activity relationship (QSAR) of chlorine effects on E(LUMO) of disinfection by-product: Chlorinated alkanes.
    Tang WZ; Wang F
    Chemosphere; 2010 Feb; 78(7):914-21. PubMed ID: 20004459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative structure-property relationship studies on electrochemical degradation of substituted phenols using a support vector machine.
    Yuan S; Xiao M; Zheng G; Tian M; Lu X
    SAR QSAR Environ Res; 2006 Oct; 17(5):473-81. PubMed ID: 17050187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption kinetics of aromatic compounds on carbon nanotubes and activated carbons.
    Zhang S; Shao T; Kose HS; Karanfil T
    Environ Toxicol Chem; 2012 Jan; 31(1):79-85. PubMed ID: 22021047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Unified Linear Free Energy Relationship for Abiotic Reduction Rate of Nitroaromatics and Hydroquinones Using Quantum Chemically Estimated Energies.
    Hickey KP; Di Toro DM; Allen HE; Carbonaro RF; Chiu PC
    Environ Toxicol Chem; 2020 Dec; 39(12):2389-2395. PubMed ID: 32897583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear free energy relationships on rate constants for the gas-phase reactions of hydroxyl radicals with PAHs and PCDD/Fs.
    Yan C; Chen J; Huang L; Ding G; Huang X
    Chemosphere; 2005 Dec; 61(10):1523-8. PubMed ID: 15946722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative structure-property relationship of aromatic sulfur-containing carboxylates.
    Liu XH; Yang ZF; Wang LS
    J Environ Sci (China); 2003 Nov; 15(6):721-7. PubMed ID: 14758887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantum chemical based toxicity study of estimated reduction potential and hydrophobicity in series of nitroaromatic compounds.
    Gooch A; Sizochenko N; Sviatenko L; Gorb L; Leszczynski J
    SAR QSAR Environ Res; 2017 Feb; 28(2):133-150. PubMed ID: 28235392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitatively modeling of tetracycline photodegradation in low molecular weight organic acids under simulated sunlight irradiation.
    Liu F; Liu F; Qian X; Zhu X; Lou Y; Liu X; Cui B; Bai J
    Environ Pollut; 2021 Oct; 286():117200. PubMed ID: 34052648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DFT-based toxicity QSAR study of aromatic hydrocarbons to Vibrio fischeri: Consideration of aqueous freely dissolved concentration.
    Wang Y; Yang X; Wang J; Cong Y; Mu J; Jin F
    J Hazard Mater; 2016 May; 308():149-56. PubMed ID: 26812082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.