BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 25222723)

  • 1. TPSLVM: a dimensionality reduction algorithm based on thin plate splines.
    Jiang X; Gao J; Wang T; Shi D
    IEEE Trans Cybern; 2014 Oct; 44(10):1795-807. PubMed ID: 25222723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supervised latent linear Gaussian process latent variable model for dimensionality reduction.
    Jiang X; Gao J; Wang T; Zheng L
    IEEE Trans Syst Man Cybern B Cybern; 2012 Dec; 42(6):1620-32. PubMed ID: 22623433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supervised Gaussian process latent variable model for dimensionality reduction.
    Gao X; Wang X; Tao D; Li X
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):425-34. PubMed ID: 20699213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. M-Isomap: Orthogonal Constrained Marginal Isomap for Nonlinear Dimensionality Reduction.
    Zhang Z; Chow TW; Zhao M
    IEEE Trans Cybern; 2013 Feb; 43(1):180-91. PubMed ID: 22773048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shared Autoencoder Gaussian Process Latent Variable Model for Visual Classification.
    Li J; Zhang B; Zhang D
    IEEE Trans Neural Netw Learn Syst; 2018 Sep; 29(9):4272-4286. PubMed ID: 29990089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear dimensionality reduction for visualizing toxicity data: distance-based versus topology-based approaches.
    Kireeva NV; Ovchinnikova SI; Tetko IV; Asiri AM; Balakin KV; Tsivadze AY
    ChemMedChem; 2014 May; 9(5):1047-59. PubMed ID: 24729490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extended Poisson Gaussian-Process Latent Variable Model for Unsupervised Neural Decoding.
    Luo DD; Giri B; Diba K; Kemere C
    bioRxiv; 2024 Mar; ():. PubMed ID: 38496669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometric mean for subspace selection.
    Tao D; Li X; Wu X; Maybank SJ
    IEEE Trans Pattern Anal Mach Intell; 2009 Feb; 31(2):260-74. PubMed ID: 19110492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harmonized Multimodal Learning with Gaussian Process Latent Variable Models.
    Song G; Wang S; Huang Q; Tian Q
    IEEE Trans Pattern Anal Mach Intell; 2021 Mar; 43(3):858-872. PubMed ID: 31545710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal Similarity Gaussian Process Latent Variable Model.
    Song G; Wang S; Huang Q; Tian Q
    IEEE Trans Image Process; 2017 Sep; 26(9):4168-4181. PubMed ID: 28600247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring differential leukocyte activity from antibody microarrays using a latent variable model.
    Ho JW; Koundinya R; Caetano TS; dos Remedios CG; Charleston MA
    Genome Inform; 2008; 21():126-37. PubMed ID: 19425153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A trace ratio maximization approach to multiple kernel-based dimensionality reduction.
    Jiang W; Chung FL
    Neural Netw; 2014 Jan; 49():96-106. PubMed ID: 24211342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Online dimensionality reduction using competitive learning and Radial Basis Function network.
    Tomenko V
    Neural Netw; 2011 Jun; 24(5):501-11. PubMed ID: 21420831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shared Linear Encoder-Based Multikernel Gaussian Process Latent Variable Model for Visual Classification.
    Li J; Lu G; Zhang B; You J; Zhang D
    IEEE Trans Cybern; 2021 Feb; 51(2):534-547. PubMed ID: 31170087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graph embedding and extensions: a general framework for dimensionality reduction.
    Yan S; Xu D; Zhang B; Zhang HJ; Yang Q; Lin S
    IEEE Trans Pattern Anal Mach Intell; 2007 Jan; 29(1):40-51. PubMed ID: 17108382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graph embedded nonparametric mutual information for supervised dimensionality reduction.
    Bouzas D; Arvanitopoulos N; Tefas A
    IEEE Trans Neural Netw Learn Syst; 2015 May; 26(5):951-63. PubMed ID: 25881367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shared Kernel Information Embedding for discriminative inference.
    Memisevic R; Sigal L; Fleet DJ
    IEEE Trans Pattern Anal Mach Intell; 2012 Apr; 34(4):778-90. PubMed ID: 21808087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incremental nonlinear dimensionality reduction by manifold learning.
    Law MH; Jain AK
    IEEE Trans Pattern Anal Mach Intell; 2006 Mar; 28(3):377-91. PubMed ID: 16526424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Channel Transfer Function with Dimensionality Reduction.
    Kim HS; Schulze JP; Cone AC; Sosinsky GE; Martone ME
    Proc SPIE Int Soc Opt Eng; 2010 Jan; 7530():75300A. PubMed ID: 20582228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a better solution to the shortest common supersequence problem: the deposition and reduction algorithm.
    Ning K; Leong HW
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S12. PubMed ID: 17217504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.