These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 25222864)

  • 1. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover.
    Parreiras LS; Breuer RJ; Avanasi Narasimhan R; Higbee AJ; La Reau A; Tremaine M; Qin L; Willis LB; Bice BD; Bonfert BL; Pinhancos RC; Balloon AJ; Uppugundla N; Liu T; Li C; Tanjore D; Ong IM; Li H; Pohlmann EL; Serate J; Withers ST; Simmons BA; Hodge DB; Westphall MS; Coon JJ; Dale BE; Balan V; Keating DH; Zhang Y; Landick R; Gasch AP; Sato TK
    PLoS One; 2014; 9(9):e107499. PubMed ID: 25222864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass.
    Sato TK; Liu T; Parreiras LS; Williams DL; Wohlbach DJ; Bice BD; Ong IM; Breuer RJ; Qin L; Busalacchi D; Deshpande S; Daum C; Gasch AP; Hodge DB
    Appl Environ Microbiol; 2014 Jan; 80(2):540-54. PubMed ID: 24212571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains.
    Sonderegger M; Jeppsson M; Larsson C; Gorwa-Grauslund MF; Boles E; Olsson L; Spencer-Martins I; Hahn-Hägerdal B; Sauer U
    Biotechnol Bioeng; 2004 Jul; 87(1):90-8. PubMed ID: 15211492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates.
    Lopes DD; Rosa CA; Hector RE; Dien BS; Mertens JA; Ayub MAZ
    J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic selection of a wild Saccharomyces cerevisiae strain for simultaneous saccharification and co-fermentation of AFEX™ pretreated corn stover.
    Jin M; Sarks C; Gunawan C; Bice BD; Simonett SP; Avanasi Narasimhan R; Willis LB; Dale BE; Balan V; Sato TK
    Biotechnol Biofuels; 2013; 6():108. PubMed ID: 23890073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation.
    Romaní A; Pereira F; Johansson B; Domingues L
    Bioresour Technol; 2015 Mar; 179():150-158. PubMed ID: 25536512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase.
    Smith J; van Rensburg E; Görgens JF
    BMC Biotechnol; 2014 May; 14():41. PubMed ID: 24884721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol.
    Park H; Jeong D; Shin M; Kwak S; Oh EJ; Ko JK; Kim SR
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3245-3252. PubMed ID: 32076775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.
    Ko JK; Um Y; Woo HM; Kim KH; Lee SM
    Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical genomic guided engineering of gamma-valerolactone tolerant yeast.
    Bottoms S; Dickinson Q; McGee M; Hinchman L; Higbee A; Hebert A; Serate J; Xie D; Zhang Y; Coon JJ; Myers CL; Landick R; Piotrowski JS
    Microb Cell Fact; 2018 Jan; 17(1):5. PubMed ID: 29329531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.
    Sato TK; Tremaine M; Parreiras LS; Hebert AS; Myers KS; Higbee AJ; Sardi M; McIlwain SJ; Ong IM; Breuer RJ; Avanasi Narasimhan R; McGee MA; Dickinson Q; La Reau A; Xie D; Tian M; Reed JL; Zhang Y; Coon JJ; Hittinger CT; Gasch AP; Landick R
    PLoS Genet; 2016 Oct; 12(10):e1006372. PubMed ID: 27741250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioethanol production from steam-pretreated corn stover through an isomerase mediated process.
    De Bari I; Cuna D; Di Matteo V; Liuzzi F
    N Biotechnol; 2014 Mar; 31(2):185-95. PubMed ID: 24378965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic and sequential aerobic production of high-titer ethanol and single cell protein from NaOH-pretreated corn stover by a genome shuffling-modified Saccharomyces cerevisiae strain.
    Ren X; Wang J; Yu H; Peng C; Hu J; Ruan Z; Zhao S; Liang Y; Peng N
    Bioresour Technol; 2016 Oct; 218():623-30. PubMed ID: 27416512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production.
    Wagner ER; Myers KS; Riley NM; Coon JJ; Gasch AP
    PLoS One; 2019; 14(5):e0212389. PubMed ID: 31112537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses.
    Hasunuma T; Hori Y; Sakamoto T; Ochiai M; Hatanaka H; Kondo A
    Microb Cell Fact; 2014 Oct; 13():145. PubMed ID: 25306430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution.
    Diao L; Liu Y; Qian F; Yang J; Jiang Y; Yang S
    BMC Biotechnol; 2013 Dec; 13():110. PubMed ID: 24354503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST).
    Lau MW; Dale BE
    Proc Natl Acad Sci U S A; 2009 Feb; 106(5):1368-73. PubMed ID: 19164763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward high solids loading process for lignocellulosic biofuel production at a low cost.
    Jin M; Sarks C; Bals BD; Posawatz N; Gunawan C; Dale BE; Balan V
    Biotechnol Bioeng; 2017 May; 114(5):980-989. PubMed ID: 27888662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol production by simultaneous saccharification and cofermentation of pretreated corn stalk.
    Zhao W; Zhao F; Zhang S; Gong Q; Chen G
    J Basic Microbiol; 2019 Jul; 59(7):744-753. PubMed ID: 31087563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.