These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2522319)

  • 1. A respiratory-driven and an artificially driven ATP synthesis in mutants of Vibrio parahaemolyticus lacking H+-translocating ATPase.
    Sakai Y; Moritani C; Tsuda M; Tsuchiya T
    Biochim Biophys Acta; 1989 Mar; 973(3):450-6. PubMed ID: 2522319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na(+)-coupled ATP synthesis in a mutant of Vibrio parahaemolyticus lacking H(+)-translocating ATPase activity.
    Sakai-Tomita Y; Tsuda M; Tsuchiya T
    Biochem Biophys Res Commun; 1991 Aug; 179(1):224-8. PubMed ID: 1831976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of the H(+)-translocating adenosine triphosphatase of Vibrio parahaemolyticus.
    Moritani C; Sakai Y; Tsuda M; Kanazawa H; Tsuchiya T
    Chem Pharm Bull (Tokyo); 1990 Jan; 38(1):164-7. PubMed ID: 2140074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel mechanism of cation/substrate cotransport: Na+/H+/adenosine cotransport in Vibrio parahaemolyticus.
    Okabe Y; Sakai-Tomita Y; Mitani Y; Tsuda M; Tsuchiya T
    Biochim Biophys Acta; 1991 Sep; 1059(3):332-8. PubMed ID: 1911824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catabolite repression of the H(+)-translocating ATPase in Vibrio parahaemolyticus.
    Sakai-Tomita Y; Moritani C; Kanazawa H; Tsuda M; Tsuchiya T
    J Bacteriol; 1992 Nov; 174(21):6743-51. PubMed ID: 1328162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP synthesis in Halobacterium saccharovorum: evidence that synthesis may be catalysed by an F0F1-ATP synthase.
    Hochstein LI
    FEMS Microbiol Lett; 1992 Oct; 76(1-2):155-9. PubMed ID: 11537859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of Vibrio alginolyticus mutants defective in the respiration-coupled Na+ pump.
    Tokuda H
    Biochem Biophys Res Commun; 1983 Jul; 114(1):113-8. PubMed ID: 6882417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells.
    Dibrov PA; Lazarova RL; Skulachev VP; Verkhovskaya ML
    Biochim Biophys Acta; 1986 Jul; 850(3):458-65. PubMed ID: 2942186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP synthesis is driven by an imposed delta pH or delta mu H+ but not by an imposed delta pNa+ or delta mu Na+ in alkalophilic Bacillus firmus OF4 at high pH.
    Guffanti AA; Krulwich TA
    J Biol Chem; 1988 Oct; 263(29):14748-52. PubMed ID: 2902088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Halotolerant cyanobacterium Aphanothece halophytica contains an Na+-dependent F1F0-ATP synthase with a potential role in salt-stress tolerance.
    Soontharapirakkul K; Promden W; Yamada N; Kageyama H; Incharoensakdi A; Iwamoto-Kihara A; Takabe T
    J Biol Chem; 2011 Mar; 286(12):10169-76. PubMed ID: 21262962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protonmotive force as the source of energy for adenosine 5'-triphosphate synthesis in Escherichia coli.
    Wilson DM; Alderette JF; Maloney PC; Wilson TH
    J Bacteriol; 1976 Apr; 126(1):327-37. PubMed ID: 4427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free fatty acids decouple oxidative phosphorylation by dissipating intramembranal protons without inhibiting ATP synthesis driven by the proton electrochemical gradient.
    Rottenberg H; Steiner-Mordoch S
    FEBS Lett; 1986 Jul; 202(2):314-8. PubMed ID: 2873057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of the respiratory Na+ pump in bioenergetics of Vibrio alginolyticus.
    Tokuda H; Asano M; Shimamura Y; Unemoto T; Sugiyama S; Imae Y
    J Biochem; 1988 Apr; 103(4):650-5. PubMed ID: 3170506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. F0F1-ATPase of Vibrio parahaemolyticus: purification using new detergents and characterization.
    Ogawa W; Izawa S; Sakai-Tomita Y; Moritani C; Tsuda M; Kinomura K; Kitazawa S; Tsuchiya T
    Biochim Biophys Acta; 1994 Nov; 1188(1-2):69-74. PubMed ID: 7947906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton ATPase in rat renal cortical endocytotic vesicles.
    Sabolić I; Burckhardt G
    Biochim Biophys Acta; 1988 Jan; 937(2):398-410. PubMed ID: 2447951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inefficient aerobic energetics of Zymomonas mobilis: identifying the bottleneck.
    Rutkis R; Galinina N; Strazdina I; Kalnenieks U
    J Basic Microbiol; 2014 Oct; 54(10):1090-7. PubMed ID: 24599704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and molecular characterization of a Na+-translocating F1Fo-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum.
    Ferguson SA; Keis S; Cook GM
    J Bacteriol; 2006 Jul; 188(14):5045-54. PubMed ID: 16816177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP synthesis energized by delta pNa and delta psi in proteoliposomes containing the F0F1-ATPase from Propionigenium modestum.
    Dmitriev O; Deckers-Hebestreit G; Altendorf K
    J Biol Chem; 1993 Jul; 268(20):14776-80. PubMed ID: 8325855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid purification and characterization of F1-ATPase of Vibrio parahaemolyticus.
    Sakai Y; Kanazawa H; Tsuda M; Tsuchiya T
    Biochim Biophys Acta; 1990 Jul; 1018(1):18-22. PubMed ID: 2142893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A1Ao-ATP synthase of Methanobrevibacter ruminantium couples sodium ions for ATP synthesis under physiological conditions.
    McMillan DG; Ferguson SA; Dey D; Schröder K; Aung HL; Carbone V; Attwood GT; Ronimus RS; Meier T; Janssen PH; Cook GM
    J Biol Chem; 2011 Nov; 286(46):39882-92. PubMed ID: 21953465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.