These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Amino Acid Metabolism of Thermoanaerobacter Strain AK90: The Role of Electron-Scavenging Systems in End Product Formation. Scully SM; Orlygsson J J Amino Acids; 2015; 2015():410492. PubMed ID: 26413318 [TBL] [Abstract][Full Text] [Related]
6. Dataset describing the amino acid catabolism of Orlygsson J; Scully SM Data Brief; 2024 Feb; 52():110017. PubMed ID: 38235181 [TBL] [Abstract][Full Text] [Related]
7. Biotransformation of organic acids to their corresponding alcohols by Thermoanaerobacter pseudoethanolicus. Scully SM; Brown A; Ross AB; Orlygsson J Anaerobe; 2019 Jun; 57():28-31. PubMed ID: 30876932 [TBL] [Abstract][Full Text] [Related]
8. Biotechnological Prospects of Orlygsson J; Scully SM Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542473 [TBL] [Abstract][Full Text] [Related]
9. Dataset describing the amino acid catabolism of Scully SM; Orlygsson J Data Brief; 2019 Jun; 24():103938. PubMed ID: 31080855 [TBL] [Abstract][Full Text] [Related]
10. Thermoanaerobacter species differ in their potential to reduce organic acids to their corresponding alcohols. Hitschler L; Kuntz M; Langschied F; Basen M Appl Microbiol Biotechnol; 2018 Oct; 102(19):8465-8476. PubMed ID: 29987342 [TBL] [Abstract][Full Text] [Related]
11. Growth of the salt-tolerant yeast Zygosaccharomyces rouxii in microtiter plates: effects of NaCl, pH and temperature on growth and fusel alcohol production from branched-chain amino acids. Jansen M; Veurink JH; Euverink GJ; Dijkhuizen L FEMS Yeast Res; 2003 May; 3(3):313-8. PubMed ID: 12689638 [TBL] [Abstract][Full Text] [Related]
12. Utilization of serine, leucine, isoleucine, and valine by Thermoanaerobacter brockii in the presence of thiosulfate or Methanobacterium sp. as electron acceptors. Fardeau ML; Patel BK; Magot M; Ollivier B Anaerobe; 1997 Dec; 3(6):405-10. PubMed ID: 16887616 [TBL] [Abstract][Full Text] [Related]
13. Branched chain amino acids as source of specific branched chain volatile fatty acids during the fermentation process of fish sauce. Sanceda NG; Suzuki E; Kurata T Amino Acids; 2003; 24(1-2):81-7. PubMed ID: 12624738 [TBL] [Abstract][Full Text] [Related]
14. Comparison of different IlvE aminotransferases in Lactobacillus sakei and investigation of their contribution to aroma formation from branched chain amino acids. Freiding S; Ehrmann MA; Vogel RF Food Microbiol; 2012 Apr; 29(2):205-14. PubMed ID: 22202874 [TBL] [Abstract][Full Text] [Related]
15. [Formation of higher alcohols by Saccharomyces carlsbergensis from branched-chain amino acids and their keto analogs]. Rabinovich SE; Nedugova NE; Kagan ZS; Gracheva IM Mikrobiologiia; 1979; 48(4):625-31. PubMed ID: 39225 [TBL] [Abstract][Full Text] [Related]
16. Secondary Alcohol Dehydrogenases from Thermoanaerobacter pseudoethanolicus and Thermoanaerobacter brockii as Robust Catalysts. Musa MM; Vieille C; Phillips RS Chembiochem; 2021 Jun; 22(11):1884-1893. PubMed ID: 33594812 [TBL] [Abstract][Full Text] [Related]
17. Quorum sensing activity in Ophiostoma ulmi: effects of fusel oils and branched chain amino acids on yeast-mycelial dimorphism. Berrocal A; Navarrete J; Oviedo C; Nickerson KW J Appl Microbiol; 2012 Jul; 113(1):126-34. PubMed ID: 22519968 [TBL] [Abstract][Full Text] [Related]