These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25223506)

  • 1. A robust and real-time vascular intervention simulation based on Kirchhoff elastic rod.
    Luo M; Xie H; Xie L; Cai P; Gu L
    Comput Med Imaging Graph; 2014 Dec; 38(8):735-43. PubMed ID: 25223506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A stable and real-time nonlinear elastic approach to simulating guidewire and catheter insertions based on Cosserat rod.
    Wen Tang ; Tao Ruan Wan ; Gould DA; Thien How ; John NW
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2211-8. PubMed ID: 22614515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robust and fast approach to simulating the behavior of guidewire in vascular interventional radiology.
    Wang H; Wu J; Wei M; Ma X
    Comput Med Imaging Graph; 2015 Mar; 40():160-9. PubMed ID: 25467803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood flow-induced physically based guidewire simulation for vascular intervention training.
    Cai J; Xie H; Zhang S; Gu L
    Int J Comput Assist Radiol Surg; 2017 Sep; 12(9):1571-1583. PubMed ID: 28393299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guidewire and catheter behavioural simulation.
    Luboz V; Zhai J; Odetoyinbo T; Littler P; Gould D; How T; Bello F
    Stud Health Technol Inform; 2011; 163():317-23. PubMed ID: 21335811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A real-time haptic interface for interventional radiology procedures.
    Moix T; Ilic D; Fracheboud B; Zoethout J; Bleuler H
    Stud Health Technol Inform; 2005; 111():329-33. PubMed ID: 15718754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel catheter interaction simulating method for virtual reality interventional training systems.
    Shi P; Guo S; Jin X; Hirata H; Tamiya T; Kawanishi M
    Med Biol Eng Comput; 2023 Mar; 61(3):685-697. PubMed ID: 36585560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and development of a personalized virtual reality-based training system for vascular intervention surgery.
    Li P; Xu B; Zhang X; Fang D; Zhang J
    Comput Methods Programs Biomed; 2024 Jun; 249():108142. PubMed ID: 38547688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kirchhoff rod-based three-dimensional dynamical model and real-time simulation for medical-magnetic guidewires.
    Wu Z; Zhang J; Wei S; Chen D
    Comput Methods Programs Biomed; 2023 Oct; 240():107646. PubMed ID: 37320941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid deformable model for real-time surgical simulation.
    Zhu B; Gu L
    Comput Med Imaging Graph; 2012 Jul; 36(5):356-65. PubMed ID: 22483053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physics-based models for catheter, guidewire and stent simulation.
    Lenoir J; Cotin S; Duriez C; Neumann P
    Stud Health Technol Inform; 2006; 119():305-10. PubMed ID: 16404067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of endovascular guidewire behaviour and experimental validation.
    Luboz V; Zhai J; Odetoyinbo T; Littler P; Gould D; How T; Bello F
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):515-20. PubMed ID: 21302167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel FEM-Based Numerical Solver for Interactive Catheter Simulation in Virtual Catheterization.
    Li S; Qin J; Guo J; Chui YP; Heng PA
    Int J Biomed Imaging; 2011; 2011():815246. PubMed ID: 22203827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis and experimental observation of guidewire motion in a blood vessel model.
    Takashima K; Tsuzuki S; Ooike A; Yoshinaka K; Yu K; Ohta M; Mori K
    Med Eng Phys; 2014 Dec; 36(12):1672-83. PubMed ID: 25292450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computer-based real-time simulation of interventional radiology.
    Wang F; Duratti L; Samur E; Spaelter U; Bleuler H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1742-5. PubMed ID: 18002313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards a real-time minimally-invasive vascular intervention simulation system.
    Alderliesten T; Bosman PA; Niessen WJ
    IEEE Trans Med Imaging; 2007 Jan; 26(1):128-32. PubMed ID: 17243591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling friction, intrinsic curvature, and rotation of guide wires for simulation of minimally invasive vascular interventions.
    Alderliesten T; Konings MK; Niessen WJ
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):29-38. PubMed ID: 17260853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid dynamic deformation model for surgery simulation.
    Tagawa K; Tanaka HT
    Stud Health Technol Inform; 2011; 163():645-9. PubMed ID: 21335872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simulation-based analysis of the potential of compressed sensing for accelerating passive MR catheter visualization in endovascular therapy.
    Yerly J; Lauzon ML; Chen HS; Frayne R
    Magn Reson Med; 2010 Feb; 63(2):473-83. PubMed ID: 20099327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ICTS, an interventional cardiology training system.
    Cotin S; Dawson SL; Meglan D; Shaffer DW; Ferrell MA; Bardsley RS; Morgan FM; Nagano T; Nikom J; Sherman P; Walterman MT; Wendlandt J
    Stud Health Technol Inform; 2000; 70():59-65. PubMed ID: 10977584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.