These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 25223609)

  • 41. Streptococcus pneumoniae PstS production is phosphate responsive and enhanced during growth in the murine peritoneal cavity.
    Orihuela CJ; Mills J; Robb CW; Wilson CJ; Watson DA; Niesel DW
    Infect Immun; 2001 Dec; 69(12):7565-71. PubMed ID: 11705934
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystallization and preliminary X-ray diffraction analysis of a DING protein from Pseudomonas aeruginosa PA14.
    Djeghader A; Gotthard G; Suh A; Gonzalez D; Scott K; Elias M; Chabriere E
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Apr; 69(Pt 4):425-9. PubMed ID: 23545651
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantifying Current Events Identifies a Novel Endurance Regulator.
    Henry TC; Brynildsen MP
    Trends Microbiol; 2016 May; 24(5):324-326. PubMed ID: 26954590
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Serendipitous discovery and X-ray structure of a human phosphate binding apolipoprotein.
    Morales R; Berna A; Carpentier P; Contreras-Martel C; Renault F; Nicodeme M; Chesne-Seck ML; Bernier F; Dupuy J; Schaeffer C; Diemer H; Van-Dorsselaer A; Fontecilla-Camps JC; Masson P; Rochu D; Chabriere E
    Structure; 2006 Mar; 14(3):601-9. PubMed ID: 16531243
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Involvement of inorganic phosphate starvation in Pseudomonas aeruginosa bacterial virulence].
    Jahdauti L; Muggeo A; Paturel V; Jaisson S; Luczka E; Coraux C; Guillard T
    Rev Mal Respir; 2023 Mar; 40(3):243-246. PubMed ID: 36828680
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The DING family of proteins: ubiquitous in eukaryotes, but where are the genes?
    Berna A; Scott K; Chabrière E; Bernier F
    Bioessays; 2009 May; 31(5):570-80. PubMed ID: 19360767
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cell surface-expression of the phosphate-binding protein PstS: System development, characterization, and evaluation for phosphorus removal and recovery.
    Hussein FB; Venkiteshwaran K; Mayer BK
    J Environ Sci (China); 2020 Jun; 92():129-140. PubMed ID: 32430116
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of phosphate removal from water by immobilized phosphate-binding protein PstS.
    Kuroda A; Kunimoto H; Morohoshi T; Ikeda T; Kato J; Takiguchi N; Miya A; Ohtake H
    J Biosci Bioeng; 2000; 90(6):688-90. PubMed ID: 16232935
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphate taxis in Pseudomonas aeruginosa.
    Kato J; Ito A; Nikata T; Ohtake H
    J Bacteriol; 1992 Aug; 174(15):5149-51. PubMed ID: 1629173
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of phosphate starvation on cultures of Pseudomonas aeruginosa.
    Hou CI; Gronlund AF; Campbell JJ
    J Bacteriol; 1966 Oct; 92(4):851-5. PubMed ID: 4959048
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A tale of the unexpected.
    Webb MR
    Structure; 2006 Mar; 14(3):391-2. PubMed ID: 16531223
    [No Abstract]   [Full Text] [Related]  

  • 52. Insight into the mechanism of gallstone disease by proteomic and metaproteomic characterization of human bile.
    Yang XT; Wang J; Jiang YH; Zhang L; Du L; Li J; Liu F
    Front Microbiol; 2023; 14():1276951. PubMed ID: 38111640
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sensing preferences for prokaryotic solute binding protein families.
    Cerna-Vargas JP; Sánchez-Romera B; Matilla MA; Ortega Á; Krell T
    Microb Biotechnol; 2023 Sep; 16(9):1823-1833. PubMed ID: 37547952
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative Proteomic Analysis of Protein Patterns of
    Di Bonaventura G; Picciani C; Lupetti V; Pompilio A
    Microorganisms; 2023 Feb; 11(2):. PubMed ID: 36838406
    [No Abstract]   [Full Text] [Related]  

  • 55. Mechanisms Underlying the Virulence Regulation of
    Yi X; Xu X; Qi X; Chen Y; Zhu Z; Xu G; Li H; Kraco EK; Shen H; Lin M; Zheng J; Qin Y; Jiang X
    Microorganisms; 2022 Oct; 10(11):. PubMed ID: 36363689
    [No Abstract]   [Full Text] [Related]  

  • 56. Pseudomonas aeruginosa Initiates a Rapid and Specific Transcriptional Response during Surface Attachment.
    Jones CJ; Grotewold N; Wozniak DJ; Gloag ES
    J Bacteriol; 2022 May; 204(5):e0008622. PubMed ID: 35467391
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transcriptional analysis and target genes discovery of Pseudomonas aeruginosa biofilm developed ex vivo chronic wound model.
    Tan X; Cheng X; Hu M; Zhang Y; Jia A; Zhou J; Zhu G
    AMB Express; 2021 Nov; 11(1):157. PubMed ID: 34837552
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Accumulation of ambient phosphate into the periplasm of marine bacteria is proton motive force dependent.
    Kamennaya NA; Geraki K; Scanlan DJ; Zubkov MV
    Nat Commun; 2020 May; 11(1):2642. PubMed ID: 32457313
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sensory Repertoire of Bacterial Chemoreceptors.
    Ortega Á; Zhulin IB; Krell T
    Microbiol Mol Biol Rev; 2017 Dec; 81(4):. PubMed ID: 29070658
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pseudomonas aeruginosa cells attached to a surface display a typical proteome early as 20 minutes of incubation.
    Crouzet M; Claverol S; Lomenech AM; Le Sénéchal C; Costaglioli P; Barthe C; Garbay B; Bonneu M; Vilain S
    PLoS One; 2017; 12(7):e0180341. PubMed ID: 28678862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.