These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 25223706)

  • 1. Graphics processing unit-based quantitative second-harmonic generation imaging.
    Kabir MM; Jonayat AS; Patel S; Toussaint KC
    J Biomed Opt; 2014 Sep; 19(9):96009. PubMed ID: 25223706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-fast digital tomosynthesis reconstruction using general-purpose GPU programming for image-guided radiation therapy.
    Park JC; Park SH; Kim JS; Han Y; Cho MK; Kim HK; Liu Z; Jiang SB; Song B; Song WY
    Technol Cancer Res Treat; 2011 Aug; 10(4):295-306. PubMed ID: 21728386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Live, video-rate super-resolution microscopy using structured illumination and rapid GPU-based parallel processing.
    Lefman J; Scott K; Stranick S
    Microsc Microanal; 2011 Apr; 17(2):191-6. PubMed ID: 21385522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of collagen fiber domain organization by Fourier second harmonic generation microscopy.
    Ghazaryan A; Tsai HF; Hayrapetyan G; Chen WL; Chen YF; Jeong MY; Kim CS; Chen SJ; Dong CY
    J Biomed Opt; 2013 Mar; 18(3):31105. PubMed ID: 23174951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.
    Samant SS; Xia J; Muyan-Ozcelik P; Owens JD
    Med Phys; 2008 Aug; 35(8):3546-53. PubMed ID: 18777915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPU-accelerated Kernel Regression Reconstruction for Freehand 3D Ultrasound Imaging.
    Wen T; Li L; Zhu Q; Qin W; Gu J; Yang F; Xie Y
    Ultrason Imaging; 2017 Jul; 39(4):240-259. PubMed ID: 28627330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of collagen fiber structure using second harmonic generation imaging and two-dimensional discrete Fourier transform analysis: Application to the human optic nerve head.
    Pijanka JK; Markov PP; Midgett D; Paterson NG; White N; Blain EJ; Nguyen TD; Quigley HA; Boote C
    J Biophotonics; 2019 May; 12(5):e201800376. PubMed ID: 30578592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GPU-assisted computation of centroidal Voronoi tessellation.
    Rong G; Liu Y; Wang W; Yin X; Gu XD; Guo X
    IEEE Trans Vis Comput Graph; 2011 Mar; 17(3):345-56. PubMed ID: 21233516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GPU-based minimum variance beamformer for synthetic aperture imaging of the eye.
    Yiu BY; Yu AC
    Ultrasound Med Biol; 2015 Mar; 41(3):871-83. PubMed ID: 25638315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GPU-based acceleration of computations in nonlinear finite element deformation analysis.
    Mafi R; Sirouspour S
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):365-81. PubMed ID: 24166875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GPU Accelerated Multilevel Lagrangian Carotid Strain Imaging.
    Meshram NH; Varghese T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1370-1379. PubMed ID: 29993716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of structural disorder in intervertebral disks using second harmonic generation imaging: comparison with morphometric analysis.
    Reiser KM; Bratton C; Yankelevich DR; Knoesen A; Rocha-Mendoza I; Lotz J
    J Biomed Opt; 2007; 12(6):064019. PubMed ID: 18163835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of GPU-based medical image reconstruction.
    Després P; Jia X
    Phys Med; 2017 Oct; 42():76-92. PubMed ID: 29173924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GPU-based prompt gamma ray imaging from boron neutron capture therapy.
    Yoon DK; Jung JY; Jo Hong K; Sil Lee K; Suk Suh T
    Med Phys; 2015 Jan; 42(1):165-9. PubMed ID: 25563257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.
    Choi S; Lee H; Lee D; Choi S; Lee CL; Kwon W; Shin J; Seo CW; Kim HJ
    Med Phys; 2018 May; 45(5):1871-1888. PubMed ID: 29500855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basics of digital microscopy.
    Bernas T
    Curr Protoc Cytom; 2005 Feb; Chapter 12():Unit 12.2. PubMed ID: 18770813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRISIMUL: a GPU-based parallel approach to MRI simulations.
    Xanthis CG; Venetis IE; Chalkias AV; Aletras AH
    IEEE Trans Med Imaging; 2014 Mar; 33(3):607-17. PubMed ID: 24595337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 4D MR phase and magnitude segmentations with GPU parallel computing.
    Bergen RV; Lin HY; Alexander ME; Bidinosti CP
    Magn Reson Imaging; 2015 Jan; 33(1):134-45. PubMed ID: 25171820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphics processing unit accelerated one-dimensional blood flow computation in the human arterial tree.
    Itu L; Sharma P; Kamen A; Suciu C; Comaniciu D
    Int J Numer Method Biomed Eng; 2013 Dec; 29(12):1428-55. PubMed ID: 24009129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MIGS-GPU: Microarray Image Gridding and Segmentation on the GPU.
    Katsigiannis S; Zacharia E; Maroulis D
    IEEE J Biomed Health Inform; 2017 May; 21(3):867-874. PubMed ID: 26960232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.