BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25223898)

  • 1. Biogenic nanopalladium production by self-immobilized granular biomass: application for contaminant remediation.
    Suja E; Nancharaiah YV; Venugopalan VP
    Water Res; 2014 Nov; 65():395-401. PubMed ID: 25223898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen.
    Hennebel T; Van Nevel S; Verschuere S; De Corte S; De Gusseme B; Cuvelier C; Fitts JP; van der Lelie D; Boon N; Verstraete W
    Appl Microbiol Biotechnol; 2011 Sep; 91(5):1435-45. PubMed ID: 21590286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate.
    Chidambaram D; Hennebel T; Taghavi S; Mast J; Boon N; Verstraete W; van der Lelie D; Fitts JP
    Environ Sci Technol; 2010 Oct; 44(19):7635-40. PubMed ID: 20822130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of Cr(VI) by "palladized" biomass of Desulfovibrio desulfuricans ATCC 29577.
    Mabbett AN; Yong P; Farr JP; Macaskie LE
    Biotechnol Bioeng; 2004 Jul; 87(1):104-9. PubMed ID: 15211494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation.
    Quan X; Zhang X; Xu H
    Water Res; 2015 Jul; 78():74-83. PubMed ID: 25912251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial formation of palladium nanoparticles by Geobacter sulfurreducens for chromate reduction.
    Tuo Y; Liu G; Zhou J; Wang A; Wang J; Jin R; Lv H
    Bioresour Technol; 2013 Apr; 133():606-11. PubMed ID: 23453979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous removal of Cr(VI) from aqueous solution catalysed by palladised biomass of Desulfovibrio vulgaris.
    Humphries AC; Nott KP; Hall LD; Macaskie LE
    Biotechnol Lett; 2004 Oct; 26(19):1529-32. PubMed ID: 15604792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosupported bimetallic Pd-Au nanocatalysts for dechlorination of environmental contaminants.
    De Corte S; Hennebel T; Fitts JP; Sabbe T; Bliznuk V; Verschuere S; van der Lelie D; Verstraete W; Boon N
    Environ Sci Technol; 2011 Oct; 45(19):8506-13. PubMed ID: 21877727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of biogenic hydrogen production for hydrogen driven remediation strategies in marine environments.
    Hosseinkhani B; Hennebel T; Boon N
    N Biotechnol; 2014 Sep; 31(5):445-50. PubMed ID: 24830949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size control and catalytic activity of bio-supported palladium nanoparticles.
    Søbjerg LS; Lindhardt AT; Skrydstrup T; Finster K; Meyer RL
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):373-8. PubMed ID: 21481574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-generated metal binding polysaccharides as catalysts for synthetic applications and organic pollutant transformations.
    Baldi F; Marchetto D; Paganelli S; Piccolo O
    N Biotechnol; 2011 Dec; 29(1):74-8. PubMed ID: 21616180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocatalytic dechlorination of trichloroethylene with bio-palladium in a pilot-scale membrane reactor.
    Hennebel T; Simoen H; De Windt W; Verloo M; Boon N; Verstraete W
    Biotechnol Bioeng; 2009 Mar; 102(4):995-1002. PubMed ID: 18949748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromate reduction by immobilized palladized sulfate-reducing bacteria.
    Humphries AC; Mikheenko IP; Macaskie LE
    Biotechnol Bioeng; 2006 May; 94(1):81-90. PubMed ID: 16570313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial synthesis of bimetallic PdPt nanoparticles for catalytic reduction of 4-nitrophenol.
    Tuo Y; Liu G; Dong B; Yu H; Zhou J; Wang J; Jin R
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5249-5258. PubMed ID: 28004366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of bio-palladium nanoparticles (bio-Pd NPs) on the activity and structure of a marine microbial community.
    Nuzzo A; Hosseinkhani B; Boon N; Zanaroli G; Fava F
    Environ Pollut; 2017 Jan; 220(Pt B):1068-1078. PubMed ID: 27894722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palladium nanoparticles dispersed on functionalized macadamia nutshell biomass for formic acid-mediated removal of chromium(VI) from aqueous solution.
    Moyo M; Modise SJ; Pakade VE
    Sci Total Environ; 2020 Nov; 743():140614. PubMed ID: 32659556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cr(VI) and azo dye removal using a hollow-fibre membrane system functionalized with a biogenic Pd-magnetite catalyst.
    Coker VS; Garrity A; Wennekes WB; Roesink HD; Cutting RS; Lloyd JR
    Environ Technol; 2014; 35(5-8):1046-54. PubMed ID: 24645489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of bacterial hydrogenases in waste decontamination, manufacture of novel bionanocatalysts and in sustainable energy.
    Macaskie LE; Baxter-Plant VS; Creamer NJ; Humphries AC; Mikheenko IP; Mikheenko PM; Penfold DW; Yong P
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):76-9. PubMed ID: 15667270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biorecovered precious metals from industrial wastes: single-step conversion of a mixed metal liquid waste to a bioinorganic catalyst with environmental application.
    Mabbett AN; Sanyahumbi D; Yong P; Macaskie LE
    Environ Sci Technol; 2006 Feb; 40(3):1015-21. PubMed ID: 16509351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitigation of Cr(VI) toxicity using Pd-nanoparticles immobilized catalytic reactor (Pd-NICaR) fabricated via plasma and gamma radiation.
    Misra N; Kumar V; Rawat S; Goel NK; Shelkar SA; Jagannath ; Singhal RK; Varshney L
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):16101-16110. PubMed ID: 29594904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.