These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 25223898)
1. Biogenic nanopalladium production by self-immobilized granular biomass: application for contaminant remediation. Suja E; Nancharaiah YV; Venugopalan VP Water Res; 2014 Nov; 65():395-401. PubMed ID: 25223898 [TBL] [Abstract][Full Text] [Related]
2. Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen. Hennebel T; Van Nevel S; Verschuere S; De Corte S; De Gusseme B; Cuvelier C; Fitts JP; van der Lelie D; Boon N; Verstraete W Appl Microbiol Biotechnol; 2011 Sep; 91(5):1435-45. PubMed ID: 21590286 [TBL] [Abstract][Full Text] [Related]
3. Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. Chidambaram D; Hennebel T; Taghavi S; Mast J; Boon N; Verstraete W; van der Lelie D; Fitts JP Environ Sci Technol; 2010 Oct; 44(19):7635-40. PubMed ID: 20822130 [TBL] [Abstract][Full Text] [Related]
4. Reduction of Cr(VI) by "palladized" biomass of Desulfovibrio desulfuricans ATCC 29577. Mabbett AN; Yong P; Farr JP; Macaskie LE Biotechnol Bioeng; 2004 Jul; 87(1):104-9. PubMed ID: 15211494 [TBL] [Abstract][Full Text] [Related]
5. In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation. Quan X; Zhang X; Xu H Water Res; 2015 Jul; 78():74-83. PubMed ID: 25912251 [TBL] [Abstract][Full Text] [Related]
6. Microbial formation of palladium nanoparticles by Geobacter sulfurreducens for chromate reduction. Tuo Y; Liu G; Zhou J; Wang A; Wang J; Jin R; Lv H Bioresour Technol; 2013 Apr; 133():606-11. PubMed ID: 23453979 [TBL] [Abstract][Full Text] [Related]
7. Continuous removal of Cr(VI) from aqueous solution catalysed by palladised biomass of Desulfovibrio vulgaris. Humphries AC; Nott KP; Hall LD; Macaskie LE Biotechnol Lett; 2004 Oct; 26(19):1529-32. PubMed ID: 15604792 [TBL] [Abstract][Full Text] [Related]
8. Biosupported bimetallic Pd-Au nanocatalysts for dechlorination of environmental contaminants. De Corte S; Hennebel T; Fitts JP; Sabbe T; Bliznuk V; Verschuere S; van der Lelie D; Verstraete W; Boon N Environ Sci Technol; 2011 Oct; 45(19):8506-13. PubMed ID: 21877727 [TBL] [Abstract][Full Text] [Related]
9. Potential of biogenic hydrogen production for hydrogen driven remediation strategies in marine environments. Hosseinkhani B; Hennebel T; Boon N N Biotechnol; 2014 Sep; 31(5):445-50. PubMed ID: 24830949 [TBL] [Abstract][Full Text] [Related]
10. Size control and catalytic activity of bio-supported palladium nanoparticles. Søbjerg LS; Lindhardt AT; Skrydstrup T; Finster K; Meyer RL Colloids Surf B Biointerfaces; 2011 Jul; 85(2):373-8. PubMed ID: 21481574 [TBL] [Abstract][Full Text] [Related]
11. Bio-generated metal binding polysaccharides as catalysts for synthetic applications and organic pollutant transformations. Baldi F; Marchetto D; Paganelli S; Piccolo O N Biotechnol; 2011 Dec; 29(1):74-8. PubMed ID: 21616180 [TBL] [Abstract][Full Text] [Related]
12. Biocatalytic dechlorination of trichloroethylene with bio-palladium in a pilot-scale membrane reactor. Hennebel T; Simoen H; De Windt W; Verloo M; Boon N; Verstraete W Biotechnol Bioeng; 2009 Mar; 102(4):995-1002. PubMed ID: 18949748 [TBL] [Abstract][Full Text] [Related]
14. Microbial synthesis of bimetallic PdPt nanoparticles for catalytic reduction of 4-nitrophenol. Tuo Y; Liu G; Dong B; Yu H; Zhou J; Wang J; Jin R Environ Sci Pollut Res Int; 2017 Feb; 24(6):5249-5258. PubMed ID: 28004366 [TBL] [Abstract][Full Text] [Related]
15. Impact of bio-palladium nanoparticles (bio-Pd NPs) on the activity and structure of a marine microbial community. Nuzzo A; Hosseinkhani B; Boon N; Zanaroli G; Fava F Environ Pollut; 2017 Jan; 220(Pt B):1068-1078. PubMed ID: 27894722 [TBL] [Abstract][Full Text] [Related]
16. Palladium nanoparticles dispersed on functionalized macadamia nutshell biomass for formic acid-mediated removal of chromium(VI) from aqueous solution. Moyo M; Modise SJ; Pakade VE Sci Total Environ; 2020 Nov; 743():140614. PubMed ID: 32659556 [TBL] [Abstract][Full Text] [Related]
17. Cr(VI) and azo dye removal using a hollow-fibre membrane system functionalized with a biogenic Pd-magnetite catalyst. Coker VS; Garrity A; Wennekes WB; Roesink HD; Cutting RS; Lloyd JR Environ Technol; 2014; 35(5-8):1046-54. PubMed ID: 24645489 [TBL] [Abstract][Full Text] [Related]
18. Applications of bacterial hydrogenases in waste decontamination, manufacture of novel bionanocatalysts and in sustainable energy. Macaskie LE; Baxter-Plant VS; Creamer NJ; Humphries AC; Mikheenko IP; Mikheenko PM; Penfold DW; Yong P Biochem Soc Trans; 2005 Feb; 33(Pt 1):76-9. PubMed ID: 15667270 [TBL] [Abstract][Full Text] [Related]
19. Biorecovered precious metals from industrial wastes: single-step conversion of a mixed metal liquid waste to a bioinorganic catalyst with environmental application. Mabbett AN; Sanyahumbi D; Yong P; Macaskie LE Environ Sci Technol; 2006 Feb; 40(3):1015-21. PubMed ID: 16509351 [TBL] [Abstract][Full Text] [Related]
20. Mitigation of Cr(VI) toxicity using Pd-nanoparticles immobilized catalytic reactor (Pd-NICaR) fabricated via plasma and gamma radiation. Misra N; Kumar V; Rawat S; Goel NK; Shelkar SA; Jagannath ; Singhal RK; Varshney L Environ Sci Pollut Res Int; 2018 Jun; 25(16):16101-16110. PubMed ID: 29594904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]