BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2522395)

  • 1. Conformational modification of muscle phosphofructokinase from Jaculus orientalis upon ligand binding.
    Tijane M; el Hachimi Z; Benjouad A; Desmadril M; Yon JM
    FEBS Lett; 1989 Mar; 245(1-2):30-4. PubMed ID: 2522395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the skeletal muscle metabolism during hibernation of Jaculus orientalis.
    el Hachimi Z; Tijane M; Boissonnet G; Benjouad A; Desmadril M; Yon JM
    Comp Biochem Physiol B; 1990; 96(3):457-9. PubMed ID: 2143971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allosteric properties of muscle phosphofructokinase. 3. Thiol reactivity as an indicator of conformational state.
    Mathias MM; Kemp RG
    Biochemistry; 1972 Feb; 11(4):578-84. PubMed ID: 4334906
    [No Abstract]   [Full Text] [Related]  

  • 4. Chemical modification of SH groups of E. coli phosphofructokinase-2 induces subunit dissociation: monomers are inactive but preserve ligand binding properties.
    Guixé V
    Arch Biochem Biophys; 2000 Apr; 376(2):313-9. PubMed ID: 10775417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of muscle phosphofructokinase by alpha-glucose 1,6-bisphosphate and fructose 2,6-bisphosphate is differently affected by other allosteric effectors and by pH.
    Andrés V; Carreras J; Cussó R
    Biochem Biophys Res Commun; 1988 Dec; 157(2):664-9. PubMed ID: 2974284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allosteric regulation of yeast phosphofructokinase. Correlation between equilibrium binding, spectroscopic and kinetic data.
    Laurent M; Seydoux FJ; Dessen P
    J Biol Chem; 1979 Aug; 254(16):7515-20. PubMed ID: 157354
    [No Abstract]   [Full Text] [Related]  

  • 7. Substrate- and effector-induced conformational changes in phosphofructokinase from white muscle of rainbow trout (Oncorhynchus mykiss): a fluorescence study.
    Su JY; Storey KB
    Biochem Cell Biol; 1993; 71(5-6):255-9. PubMed ID: 8274266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of highly reactive cysteinyl and methionyl residues of rabbit muscle phosphofructokinase.
    Latshaw SP; Bazaes S; Randolph A; Poorman RA; Heinrikson RL; Kemp RG
    J Biol Chem; 1987 Aug; 262(22):10672-7. PubMed ID: 3038892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical and chemical properties of rabbit muscle phosphofructokinase cross-linked with dimethyl suberimidate.
    Lad PM; Hammes GG
    Biochemistry; 1974 Oct; 13(22):4530-7. PubMed ID: 4371809
    [No Abstract]   [Full Text] [Related]  

  • 10. Yeast phosphofructokinase: studies on thiol reactivity of a cross-linked enzyme form.
    Kriegel T; Bär J; Hübner G; Kopperschläger G
    Biomed Biochim Acta; 1991; 50(2):119-24. PubMed ID: 1831611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational states of rabbit muscle phosphofructokinase investigated by a spin label probe.
    Jones R; Dwek RA; Walker IO
    FEBS Lett; 1972 Oct; 26(1):92-6. PubMed ID: 4344298
    [No Abstract]   [Full Text] [Related]  

  • 12. Concentrations of various effectors and substrates of phosphofructokinase in the jejunum of rat and their relation to the lack of Pasteur effect in this tissue.
    Tejwani GA; Kaur J; Ananthanarayanan M; Ramaiah A
    Biochim Biophys Acta; 1974 Nov; 370(1):120-9. PubMed ID: 4279117
    [No Abstract]   [Full Text] [Related]  

  • 13. Phosphofructokinase activity in skeletal muscle extracts following administration of epinephrine.
    Mansour TE
    J Biol Chem; 1972 Oct; 247(19):6059-66. PubMed ID: 4346801
    [No Abstract]   [Full Text] [Related]  

  • 14. Reactivity of the thiol groups of Escherichia coli phosphofructo-1-kinase.
    Banas T; Gontero B; Drews VL; Johnson SL; Marcus F; Kemp RG
    Biochim Biophys Acta; 1988 Nov; 957(2):178-84. PubMed ID: 2973354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-labelled phosphofructokinase. A simple and direct approach to the study of allosteric equilibria under near-physiological conditions.
    Jones R; Dwek RA; Walker IO
    Eur J Biochem; 1975 Dec; 60(1):187-98. PubMed ID: 1264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of calmodulin with muscle phosphofructokinase. Interplay with metabolic effectors of the enzyme under physiological conditions.
    Mayr GW
    Eur J Biochem; 1984 Sep; 143(3):521-9. PubMed ID: 6236976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfhydryl groups of yeast phosphofructokinase-specific localization on beta subunits of fructose 6-phosphate binding sites as demonstrated by a differential chemical labeling study.
    Tijane MN; Chaffotte AF; Seydoux FJ; Roucous C; Laurent M
    J Biol Chem; 1980 Nov; 255(21):10188-93. PubMed ID: 6448847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic studies on effector-induced and substrate-induced conformation changes of phosphofructokinase.
    Grosse R; Eckert K; Otto M; Jacobasch G; Repke KR
    Eur J Biochem; 1977 Apr; 74(3):509-19. PubMed ID: 140049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and properties of adductor muscle phosphofructokinase from the oyster, Crassostrea virginica. The aerobic/anaerobic transition: role of arginine phosphate in enzyme control.
    Storey KB
    Eur J Biochem; 1976 Nov; 70(2):331-7. PubMed ID: 12948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the fast reacting thiol groups in phosphofructokinase from baker's yeast.
    Bär J; Hübner G; Kopperschläger G
    Biomed Biochim Acta; 1988; 47(8):731-6. PubMed ID: 2977098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.