These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25224148)

  • 1. Clinical evaluation of a high-fidelity wireless intravaginal pressure sensor.
    Arora AS; Kruger JA; Budgett DM; Hayward LM; Smalldridge J; Nielsen PF; Kirton RS
    Int Urogynecol J; 2015 Feb; 26(2):243-9. PubMed ID: 25224148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and testing of a vaginal pressure sensor to measure intra-abdominal pressure in women.
    Rosenbluth EM; Johnson PJ; Hitchcock RW; Nygaard IE
    Neurourol Urodyn; 2010 Apr; 29(4):532-5. PubMed ID: 19693948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical appraisal of the methods of measuring leak-point pressures in women with stress incontinence.
    Miklos JR; Sze EH; Karram MM
    Obstet Gynecol; 1995 Sep; 86(3):349-52. PubMed ID: 7651641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urodynamic appraisal of vaginal versus rectal pressure recordings as indication of intra-abdominal pressure changes.
    Bhatia NN; Bergman A
    Urology; 1986 May; 27(5):482-5. PubMed ID: 3705289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and development of a novel intra-vaginal pressure sensor.
    Kruger J; Hayward L; Nielsen P; Loiselle D; Kirton R
    Int Urogynecol J; 2013 Oct; 24(10):1715-21. PubMed ID: 23640001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The presence of transurethral cystometry catheter and type of stress test affect the measurement of abdominal leak point pressure (ALPP) in women with stress urinary incontinence (SUI).
    Türker P; Kilic G; Tarcan T
    Neurourol Urodyn; 2010 Apr; 29(4):536-9. PubMed ID: 19693953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reproducibility of intra-abdominal pressure measured during physical activities via a wireless vaginal transducer.
    Egger MJ; Hamad NM; Hitchcock RW; Coleman TJ; Shaw JM; Hsu Y; Nygaard IE
    Female Pelvic Med Reconstr Surg; 2015; 21(3):164-9. PubMed ID: 25730430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of air-filled and water-filled catheters for use in cystometric assessment.
    Sheng W; Kirschner-Hermanns R
    Int Urogynecol J; 2019 Dec; 30(12):2061-2067. PubMed ID: 30888456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First in Human Subjects Testing of the UroMonitor: A Catheter-free Wireless Ambulatory Bladder Pressure Monitor.
    Frainey BT; Majerus SJA; Derisavifard S; Lewis KC; Williams AR; Balog BM; Butler RS; Goldman HB; Damaser MS
    J Urol; 2023 Jul; 210(1):186-195. PubMed ID: 37293725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Videourodynamic analysis of the relationship of Valsalva and cough leak point pressures in women with stress urinary incontinence.
    Kuo HC
    Urology; 2003 Mar; 61(3):544-8; discussion 548-9. PubMed ID: 12639643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of water and air charged transducer catheter pressures in the evaluation of cystometrogram and voiding pressure studies.
    McKinney TB; Babin EA; Ciolfi V; McKinney CR; Shah N
    Neurourol Urodyn; 2018 Apr; 37(4):1434-1440. PubMed ID: 29363824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of vaginal pressure measurements in urodynamic testing.
    Richardson DA
    Obstet Gynecol; 1985 Oct; 66(4):581-4. PubMed ID: 4047548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance analysis of the T-DOC® air-charged catheters: An alternate technology for urodynamics.
    Couri BM; Bitzos S; Bhardwaj D; Lockhart E; Yue A; Goping I
    Neurourol Urodyn; 2018 Feb; 37(2):619-625. PubMed ID: 28715147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bladder neck mobility in continent nulliparous women.
    Peschers UM; Fanger G; Schaer GN; Vodusek DB; DeLancey JO; Schuessler B
    BJOG; 2001 Mar; 108(3):320-4. PubMed ID: 11281475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a novel intra-vaginal transducer with improved dynamic response.
    Johnson PJ; Rosenbluth EM; Nygaard IE; Parikh MK; Hitchcock RW
    Biomed Microdevices; 2009 Dec; 11(6):1213-21. PubMed ID: 19629699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Baseline abdominal pressure and valsalva leak point pressures-correlation with clinical and urodynamic data.
    Madjar S; Balzarro M; Appell RA; Tchetgen MB; Nelson D
    Neurourol Urodyn; 2003; 22(1):2-6. PubMed ID: 12478594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of transurethral catheter during urodynamics may unmask stress urinary incontinence.
    Maniam P; Goldman HB
    J Urol; 2002 May; 167(5):2080-2. PubMed ID: 11956444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproducibility of a new method to determine cough-induced leak-point pressure in women with stress urinary incontinence.
    Siltberg H; Larsson G; Victor A
    Int Urogynecol J Pelvic Floor Dysfunct; 1996; 7(1):13-9. PubMed ID: 8798081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of urodynamic pressures measured simultaneously by air-charged and water-filled catheter systems.
    Awada HK; Fletter PC; Zaszczurynski PJ; Cooper MA; Damaser MS
    Neurourol Urodyn; 2015 Aug; 34(6):507-12. PubMed ID: 25250974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rectal, central venous, gastric and bladder pressures versus esophageal pressure for the measurement of cough strength: a prospective clinical comparison.
    Aguilera LG; Gallart L; Álvarez JC; Vallès J; Gea J
    Respir Res; 2018 Oct; 19(1):191. PubMed ID: 30285741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.