BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25224149)

  • 1. Influence of fatty acid on lipase-catalyzed synthesis of ascorbyl esters and their free radical scavenging capacity.
    Stojanović M; Carević M; Mihailović M; Veličković D; Dimitrijević A; Milosavić N; Bezbradica D
    Biotechnol Appl Biochem; 2015; 62(4):458-66. PubMed ID: 25224149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of 6-O-L-Ascorbyl Palmitate by Immobilized Candida antarctica Lipase B.
    Yadav MG; Kavadia MR; Vadgama RN; Odaneth AA; Lali AM
    Appl Biochem Biotechnol; 2018 Apr; 184(4):1168-1186. PubMed ID: 28971362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of ascorbyl oleate by transesterification of olive oil with ascorbic acid in polar organic media catalyzed by immobilized lipases.
    Moreno-Perez S; Filice M; Guisan JM; Fernandez-Lorente G
    Chem Phys Lipids; 2013 Sep; 174():48-54. PubMed ID: 23891831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipase-catalyzed synthesis of ascorbyl oleate in acetone: optimization of reaction conditions and lipase reusability.
    Stojanović M; Velićković D; Dimitrijević A; Milosavić N; Knežević-Jugović Z; Bezbradica D
    J Oleo Sci; 2013; 62(8):591-603. PubMed ID: 23985489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic Synthesis of l-Ascorbyl Fatty Acid Esters Under Ultrasonic Irradiation and Comparison of Their Antioxidant Activity and Stability.
    Jiang C; Lu Y; Li Z; Li C; Yan R
    J Food Sci; 2016 Jun; 81(6):C1370-7. PubMed ID: 27100741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocatalytic synthesis of ascorbyl esters and their biotechnological applications.
    Karmee SK
    Appl Microbiol Biotechnol; 2009 Jan; 81(6):1013-22. PubMed ID: 19030854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of mixed esters of ascorbic acid using methyl esters of palm and soybean oils.
    Hsieh HJ; Chen JW; Giridhar R; Wu WT
    Prep Biochem Biotechnol; 2005; 35(2):113-8. PubMed ID: 15881593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipase-catalyzed synthesis of sorbitol-fatty acid esters at extremely high substrate concentrations.
    Kim HJ; Youn SH; Shin CS
    J Biotechnol; 2006 May; 123(2):174-84. PubMed ID: 16356573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of some glucose-fatty acid esters by lipase from Candida antarctica and their emulsion functions.
    Ren K; Lamsal BP
    Food Chem; 2017 Jan; 214():556-563. PubMed ID: 27507510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel surface-active oligofructose fatty acid mono-esters by enzymatic esterification.
    van Kempen SE; Boeriu CG; Schols HA; de Waard P; van der Linden E; Sagis LM
    Food Chem; 2013 Jun; 138(2-3):1884-91. PubMed ID: 23411321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipophilization of ascorbic acid: a monolayer study and biological and antileishmanial activities.
    Kharrat N; Aissa I; Sghaier M; Bouaziz M; Sellami M; Laouini D; Gargouri Y
    J Agric Food Chem; 2014 Sep; 62(37):9118-27. PubMed ID: 25148258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of Candida antarctica lipase B onto Purolite
    Ćorović M; Mihailović M; Banjanac K; Carević M; Milivojević A; Milosavić N; Bezbradica D
    Bioprocess Biosyst Eng; 2017 Jan; 40(1):23-34. PubMed ID: 27534413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic synthesis of aroma acetoin fatty acid esters by immobilized Candida antarctica lipase B.
    Xiao Z; Hou X; Lyu X; Zhao JY; Xi L; Li J; Lu JR
    Biotechnol Lett; 2015 Aug; 37(8):1671-7. PubMed ID: 25851952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic synthesis of L-ascorbyl linoleate in organic media.
    Song Q; Zhao Y; Xu W; Zhou W; Wei D
    Bioprocess Biosyst Eng; 2006 Mar; 28(4):211-5. PubMed ID: 16284781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic acylation of isoorientin and isovitexin from bamboo-leaf extracts with fatty acids and antiradical activity of the acylated derivatives.
    Ma X; Yan R; Yu S; Lu Y; Li Z; Lu H
    J Agric Food Chem; 2012 Oct; 60(43):10844-9. PubMed ID: 23057589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steryl and stanyl esters of fatty acids by solvent-free esterification and transesterification in vacuo using lipases from Rhizomucor miehei, Candida antarctica, and Carica papaya.
    Weber N; Weitkamp P; Mukherjee KD
    J Agric Food Chem; 2001 Nov; 49(11):5210-6. PubMed ID: 11714305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis with Immobilized Lipases and Downstream Processing of Ascorbyl Palmitate.
    Tufiño C; Bernal C; Ottone C; Romero O; Illanes A; Wilson L
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31491845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly regioselective synthesis of undecylenic acid esters of purine nucleosides catalyzed by Candida antarctica lipase B.
    Gao WL; Li N; Zong MH
    Biotechnol Lett; 2011 Nov; 33(11):2233-40. PubMed ID: 21744146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocatalytic acylation of carbohydrates with fatty acids from palm fatty acid distillates.
    Chaiyaso T; H-Kittikun A; Zimmermann W
    J Ind Microbiol Biotechnol; 2006 May; 33(5):338-42. PubMed ID: 16402249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of lactose fatty acid ester biosurfactants using free and immobilized lipases in organic solvents.
    Enayati M; Gong Y; Goddard JM; Abbaspourrad A
    Food Chem; 2018 Nov; 266():508-513. PubMed ID: 30381219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.