BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 25224640)

  • 21. Recent Advances in Development of Genetically Encoded Fluorescent Sensors.
    Sanford L; Palmer A
    Methods Enzymol; 2017; 589():1-49. PubMed ID: 28336060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a molecularly evolved, highly sensitive CaMKII FRET sensor with improved expression pattern.
    Shibata AC; Maebashi HK; Nakahata Y; Nabekura J; Murakoshi H
    PLoS One; 2015; 10(3):e0121109. PubMed ID: 25799407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary optimization of fluorescent proteins for intracellular FRET.
    Nguyen AW; Daugherty PS
    Nat Biotechnol; 2005 Mar; 23(3):355-60. PubMed ID: 15696158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A genetically encoded Förster resonance energy transfer sensor for monitoring in vivo trehalose-6-phosphate dynamics.
    Peroza EA; Ewald JC; Parakkal G; Skotheim JM; Zamboni N
    Anal Biochem; 2015 Apr; 474():1-7. PubMed ID: 25582303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Live cell monitoring of glycine betaine by FRET-based genetically encoded nanosensor.
    Ahmad M; Ameen S; Siddiqi TO; Khan P; Ahmad A
    Biosens Bioelectron; 2016 Dec; 86():169-175. PubMed ID: 27371825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetically Encoded Förster Resonance Energy Transfer-Based Biosensors Studied on the Single-Molecule Level.
    Höfig H; Otten J; Steffen V; Pohl M; Boersma AJ; Fitter J
    ACS Sens; 2018 Aug; 3(8):1462-1470. PubMed ID: 29979038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-time monitoring of glutathione in living cells using genetically encoded FRET-based ratiometric nanosensor.
    Ahmad M; Anjum NA; Asif A; Ahmad A
    Sci Rep; 2020 Jan; 10(1):992. PubMed ID: 31969596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oligomeric sensor kinase DcuS in the membrane of Escherichia coli and in proteoliposomes: chemical cross-linking and FRET spectroscopy.
    Scheu PD; Liao YF; Bauer J; Kneuper H; Basché T; Unden G; Erker W
    J Bacteriol; 2010 Jul; 192(13):3474-83. PubMed ID: 20453099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Method for Developing Optical Sensors Using a Synthetic Dye-Fluorescent Protein FRET Pair and Computational Modeling and Assessment.
    Mitchell JA; Zhang WH; Herde MK; Henneberger C; Janovjak H; O'Mara ML; Jackson CJ
    Methods Mol Biol; 2017; 1596():89-99. PubMed ID: 28293882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ancestral Protein Reconstruction and Circular Permutation for Improving the Stability and Dynamic Range of FRET Sensors.
    Clifton BE; Whitfield JH; Sanchez-Romero I; Herde MK; Henneberger C; Janovjak H; Jackson CJ
    Methods Mol Biol; 2017; 1596():71-87. PubMed ID: 28293881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of physiological redox state with novel FRET protein probes.
    Oku M; Sakai Y
    Antioxid Redox Signal; 2012 Apr; 16(7):698-704. PubMed ID: 21883046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species.
    Höfig H; Cerminara M; Ritter I; Schöne A; Pohl M; Steffen V; Walter J; Vergara Dal Pont I; Katranidis A; Fitter J
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30486450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ratiometric analyses at critical temperatures can magnify the signal intensity of FRET-based sugar sensors with periplasmic binding proteins.
    Gam J; Ha JS; Kim H; Lee DH; Lee J; Lee SG
    Biosens Bioelectron; 2015 Oct; 72():37-43. PubMed ID: 25957075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Domain-specific fluorescence resonance energy transfer (FRET) sensors of metallothionein/thionein.
    Hong SH; Hao Q; Maret W
    Protein Eng Des Sel; 2005 Jun; 18(6):255-63. PubMed ID: 15911539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Non-Invasive Tool for Real-Time Measurement of Sulfate in Living Cells.
    Fatima U; Okla MK; Mohsin M; Naz R; Soufan W; Al-Ghamdi AA; Ahmad A
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32272790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time monitoring of the in vivo redox state transition using the ratiometric redox state sensor protein FROG/B.
    Sugiura K; Mihara S; Fu N; Hisabori T
    Proc Natl Acad Sci U S A; 2020 Jul; 117(27):16019-16026. PubMed ID: 32576684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A homogeneous fluorometric assay platform based on novel synthetic proteins.
    Vardar-Schara G; Krab IM; Yi G; Su WW
    Biochem Biophys Res Commun; 2007 Sep; 361(1):103-8. PubMed ID: 17659261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A redox-sensitive yellow fluorescent protein sensor for monitoring nuclear glutathione redox dynamics.
    Banach-Latapy A; Dardalhon M; Huang ME
    Methods Mol Biol; 2015; 1228():159-69. PubMed ID: 25311129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetically-encoded FRET-based sensors for monitoring Zn(2+) in living cells.
    Hessels AM; Merkx M
    Metallomics; 2015 Feb; 7(2):258-66. PubMed ID: 25156481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.