These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25224752)

  • 1. Kinetic study of the heterogeneous photocatalysis of porous nanocrystalline TiO₂ assemblies using a continuous random walk simulation.
    Liu B; Zhao X
    Phys Chem Chem Phys; 2014 Oct; 16(40):22343-51. PubMed ID: 25224752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of electron transport and photocatalysis of nanocrystalline clusters studied by Monte-Carlo continuity random walking.
    Liu B; Li Z; Zhao X
    Phys Chem Chem Phys; 2015 Feb; 17(7):5265-73. PubMed ID: 25608276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A stochastic study of electron transfer kinetics in nano-particulate photocatalysis: a comparison of the quasi-equilibrium approximation with a random walking model.
    Liu B; Zhao X; Yu J; Fujishima A; Nakata K
    Phys Chem Chem Phys; 2016 Nov; 18(46):31914-31923. PubMed ID: 27844076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte-Carlo modelling of nano-material photocatalysis: bridging photocatalytic activity and microscopic charge kinetics.
    Liu B
    Phys Chem Chem Phys; 2016 Apr; 18(16):11520-7. PubMed ID: 27063486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of electron interfacial transfer in mesoporous nano-TiO
    Liu B; Yang J; Zhao X; Yu J
    Phys Chem Chem Phys; 2017 Mar; 19(13):8866-8873. PubMed ID: 28294219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of electron behavior in Nano-TiO2 photocatalysis by using in situ open-circuit voltage and photoconductivity measurements.
    Liu B; Wang X; Wen L; Zhao X
    Chemistry; 2013 Aug; 19(32):10751-9. PubMed ID: 23794228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective aerobic oxidation mediated by TiO(2) photocatalysis.
    Lang X; Ma W; Chen C; Ji H; Zhao J
    Acc Chem Res; 2014 Feb; 47(2):355-63. PubMed ID: 24164388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instantaneous generation of charge-separated state on TiO₂ surface sensitized with plasmonic nanoparticles.
    Long R; Prezhdo OV
    J Am Chem Soc; 2014 Mar; 136(11):4343-54. PubMed ID: 24568726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and reactions of O2 on anatase TiO2.
    Li YF; Aschauer U; Chen J; Selloni A
    Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient absorption studies and numerical modeling of iodine photoreduction by nanocrystalline TiO2 films.
    Green AN; Chandler RE; Haque SA; Nelson J; Durrant JR
    J Phys Chem B; 2005 Jan; 109(1):142-50. PubMed ID: 16850997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the role of localized surface plasmon resonance in UV-Vis light irradiated Au/TiO₂ photocatalysis systems: pros and cons.
    Lin Z; Wang X; Liu J; Tian Z; Dai L; He B; Han C; Wu Y; Zeng Z; Hu Z
    Nanoscale; 2015 Mar; 7(9):4114-23. PubMed ID: 25665512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the Stopped Flow Technique to the TiO₂-Heterogeneous Photocatalysis of Hexavalent Chromium in Aqueous Suspensions: Comparison with O₂ and H₂O₂ as Electron Acceptors.
    Meichtry JM; Dillert R; Bahnemann DW; Litter MI
    Langmuir; 2015 Jun; 31(22):6229-36. PubMed ID: 25974749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Study of Homogeneous and Heterogeneous Photocatalytic Redox Reactions: PW(12)O(40)(3-) vs TiO(2).
    Kim S; Park H; Choi W
    J Phys Chem B; 2004 May; 108(20):6402-11. PubMed ID: 18950128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of heterostructured g-C₃N₄/Ag/TiO₂ microspheres with enhanced photocatalysis performance under visible-light irradiation.
    Chen Y; Huang W; He D; Situ Y; Huang H
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14405-14. PubMed ID: 25089850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe2 O3 -TiO2 nanocomposites for enhanced charge separation and photocatalytic activity.
    Moniz SJ; Shevlin SA; An X; Guo ZX; Tang J
    Chemistry; 2014 Nov; 20(47):15571-9. PubMed ID: 25280047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis.
    Lu Y; Yu H; Chen S; Quan X; Zhao H
    Environ Sci Technol; 2012 Feb; 46(3):1724-30. PubMed ID: 22224958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation of reactive trapped holes in TiO2 undergoing photocatalytic oxidation of adsorbed alcohols: evaluation of the reaction rates and yields.
    Tamaki Y; Furube A; Murai M; Hara K; Katoh R; Tachiya M
    J Am Chem Soc; 2006 Jan; 128(2):416-7. PubMed ID: 16402821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced photocatalytic activity of nc-TiO2 by promoting photogenerated electrons captured by the adsorbed oxygen.
    Cao Y; Jing L; Shi X; Luan Y; Durrant JR; Tang J; Fu H
    Phys Chem Chem Phys; 2012 Jun; 14(24):8530-6. PubMed ID: 22618510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel coupled structures of FeWO4/TiO2 and FeWO4/TiO2/CdS designed for highly efficient visible-light photocatalysis.
    Bera S; Rawal SB; Kim HJ; Lee WI
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9654-63. PubMed ID: 24847976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of electron transfer between TiO2 films and conducting substrates on the photocatalytic oxidation of organic pollutants.
    Dai W; Wang X; Liu P; Xu Y; Li G; Fu X
    J Phys Chem B; 2006 Jul; 110(27):13470-6. PubMed ID: 16821872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.