These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 25224833)
1. The visual system of a palaeognathous bird: visual field, retinal topography and retino-central connections in the Chilean tinamou (Nothoprocta perdicaria). Krabichler Q; Vega-Zuniga T; Morales C; Luksch H; Marín GJ J Comp Neurol; 2015 Feb; 523(2):226-50. PubMed ID: 25224833 [TBL] [Abstract][Full Text] [Related]
2. The centrifugal visual system of a palaeognathous bird, the Chilean Tinamou (Nothoprocta perdicaria). Krabichler Q; Vega-Zuniga T; Carrasco D; Fernandez M; Gutiérrez-Ibáñez C; Marín G; Luksch H J Comp Neurol; 2017 Aug; 525(11):2514-2534. PubMed ID: 28256705 [TBL] [Abstract][Full Text] [Related]
3. The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi). IV. Bilateral projections and the binocular visual field. Collin SP; Northcutt RG Brain Behav Evol; 1995; 45(1):34-53. PubMed ID: 7866770 [TBL] [Abstract][Full Text] [Related]
4. The distribution of neurons projecting from the retina and visual cortex to the thalamus and tectum opticum of the barn owl, Tyto alba, and the burrowing owl, Speotyto cunicularia. Bravo H; Pettigrew JD J Comp Neurol; 1981 Jul; 199(3):419-41. PubMed ID: 7263955 [TBL] [Abstract][Full Text] [Related]
5. Do American goldfinches see their world like passive prey foragers? A study on visual fields, retinal topography, and sensitivity of photoreceptors. Baumhardt PE; Moore BA; Doppler M; Fernández-Juricic E Brain Behav Evol; 2014; 83(3):181-98. PubMed ID: 24663005 [TBL] [Abstract][Full Text] [Related]
6. Wulst efferents in the little owl Athene noctua: an investigation of projections to the optic tectum. Casini G; Porciatti V; Fontanesi G; Bagnoli P Brain Behav Evol; 1992; 39(2):101-15. PubMed ID: 1555108 [TBL] [Abstract][Full Text] [Related]
7. Tectal neurons that participate in centrifugal control of the quail retina: a morphological study by means of retrograde labeling with biocytin. Uchiyama H; Yamamoto N; Ito H Vis Neurosci; 1996; 13(6):1119-27. PubMed ID: 8961541 [TBL] [Abstract][Full Text] [Related]
8. Regional specialization in retinal ganglion cell projection to optic tectum of Dipsosaurus dorsalis (Iguanidae). Peterson EH J Comp Neurol; 1981 Feb; 196(2):225-52. PubMed ID: 7217356 [TBL] [Abstract][Full Text] [Related]
9. Topographic specializations in the retinal ganglion cell layer correlate with lateralized visual behavior, ecology, and evolution in cockatoos. Coimbra JP; Collin SP; Hart NS J Comp Neurol; 2014 Oct; 522(15):3363-85. PubMed ID: 24889497 [TBL] [Abstract][Full Text] [Related]
10. The topography of primate retina: a study of the human, bushbaby, and new- and old-world monkeys. Stone J; Johnston E J Comp Neurol; 1981 Feb; 196(2):205-23. PubMed ID: 7217355 [TBL] [Abstract][Full Text] [Related]
11. Retinal projections in lamprey (Lampetra fluviatilis). Kosareva AA J Hirnforsch; 1980; 21(3):243-56. PubMed ID: 6158536 [TBL] [Abstract][Full Text] [Related]
12. Tubular eyes of deep-sea fishes: a comparative study of retinal topography. Collin SP; Hoskins RV; Partridge JC Brain Behav Evol; 1997; 50(6):335-57. PubMed ID: 9406644 [TBL] [Abstract][Full Text] [Related]
13. Retinal projections in the goldfish: a study using cobaltous-lysine. Springer AD; Gaffney JS J Comp Neurol; 1981 Dec; 203(3):401-24. PubMed ID: 6274920 [TBL] [Abstract][Full Text] [Related]
14. Visual system of the fossorial mole-lemmings, Ellobius talpinus and Ellobius lutescens. Herbin M; Repérant J; Cooper HM J Comp Neurol; 1994 Aug; 346(2):253-75. PubMed ID: 7962718 [TBL] [Abstract][Full Text] [Related]
15. Seven retinal specializations in the tubular eye of the deep-sea pearleye, Scopelarchus michaelsarsi: a case study in visual optimization. Collin SP; Hoskins RV; Partridge JC Brain Behav Evol; 1998; 51(6):291-314. PubMed ID: 9623907 [TBL] [Abstract][Full Text] [Related]
16. Ganglion cells of the cat accessory optic system: morphology and retinal topography. Farmer SG; Rodieck RW J Comp Neurol; 1982 Feb; 205(2):190-8. PubMed ID: 7076892 [TBL] [Abstract][Full Text] [Related]
17. The evolution of the centrifugal visual system of vertebrates. A cladistic analysis and new hypotheses. Repérant J; Médina M; Ward R; Miceli D; Kenigfest NB; Rio JP; Vesselkin NP Brain Res Rev; 2007 Jan; 53(1):161-97. PubMed ID: 17059846 [TBL] [Abstract][Full Text] [Related]
18. Topography of the retinal projection to the superficial pretectal parvicellular nucleus of goldfish: a cobaltous-lysine study. Springer AD; Mednick AS J Comp Neurol; 1985 Jul; 237(2):239-50. PubMed ID: 4031123 [TBL] [Abstract][Full Text] [Related]
19. Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi. Cooper HM; Herbin M; Nevo E J Comp Neurol; 1993 Feb; 328(3):313-50. PubMed ID: 8440785 [TBL] [Abstract][Full Text] [Related]