These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25224911)

  • 1. Design of novel additives and nonaqueous solvents for lithium-ion batteries through screening of cyclic organic molecules: an ab initio study of redox potentials.
    Park MS; Kang YS; Im D; Doo SG; Chang H
    Phys Chem Chem Phys; 2014 Oct; 16(40):22391-8. PubMed ID: 25224911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretic calculation for understanding the oxidation process of 1,4-dimethoxybenzene-based compounds as redox shuttles for overcharge protection of lithium ion batteries.
    Li T; Xing L; Li W; Peng B; Xu M; Gu F; Hu S
    J Phys Chem A; 2011 May; 115(19):4988-94. PubMed ID: 21517049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles calculations of oxidation potentials of electrolytes in lithium-sulfur batteries and their variations with changes in environment.
    Han J; Balbuena PB
    Phys Chem Chem Phys; 2018 Jul; 20(27):18811-18827. PubMed ID: 29964286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries.
    Zhong Z; Ouyang C; Shi S; Lei M
    Chemphyschem; 2008 Oct; 9(14):2104-8. PubMed ID: 18729122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A search map for organic additives and solvents applicable in high-voltage rechargeable batteries.
    Park MS; Park I; Kang YS; Im D; Doo SG
    Phys Chem Chem Phys; 2016 Sep; 18(38):26807-26815. PubMed ID: 27711632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab Initio Calculations of the Redox Potentials of Additives for Lithium-Ion Batteries and Their Prediction through Machine Learning.
    Okamoto Y; Kubo Y
    ACS Omega; 2018 Jul; 3(7):7868-7874. PubMed ID: 31458929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Li-Binding Thermodynamics and Redox Properties of BNOPS-Based Organic Compounds for Cathodes in Lithium-Ion Batteries.
    Lee DK; Go CY; Kim KC
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31972-31979. PubMed ID: 31393115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-substituted phenothiazine derivatives: how the stability of the neutral and radical cation forms affects overcharge performance in lithium-ion batteries.
    Narayana KA; Casselman MD; Elliott CF; Ergun S; Parkin SR; Risko C; Odom SA
    Chemphyschem; 2015 Apr; 16(6):1179-89. PubMed ID: 25504135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical and ab initio investigations to design a new phenothiazine based organic redox polymeric material for metal-ion battery cathodes.
    Godet-Bar T; Leprêtre JC; Le Bacq O; Sanchez JY; Deronzier A; Pasturel A
    Phys Chem Chem Phys; 2015 Oct; 17(38):25283-96. PubMed ID: 26355417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards high throughput screening of electrochemical stability of battery electrolytes.
    Borodin O; Olguin M; Spear CE; Leiter KW; Knap J
    Nanotechnology; 2015 Sep; 26(35):354003. PubMed ID: 26266636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-potential reversible Li deintercalation in a substituted tetrahydroxy-p-benzoquinone dilithium salt: an experimental and theoretical study.
    Barrès AL; Geng J; Bonnard G; Renault S; Gottis S; Mentré O; Frayret C; Dolhem F; Poizot P
    Chemistry; 2012 Jul; 18(28):8800-12. PubMed ID: 22689440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical and structural indicators for large redox potentials in Fe-based positive electrode materials.
    Melot BC; Scanlon DO; Reynaud M; Rousse G; Chotard JN; Henry M; Tarascon JM
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10832-9. PubMed ID: 24588538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ-formed Li2S in lithiated graphite electrodes for lithium-sulfur batteries.
    Fu Y; Zu C; Manthiram A
    J Am Chem Soc; 2013 Dec; 135(48):18044-7. PubMed ID: 24245559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries.
    Sevov CS; Brooner RE; Chénard E; Assary RS; Moore JS; Rodríguez-López J; Sanford MS
    J Am Chem Soc; 2015 Nov; 137(45):14465-72. PubMed ID: 26514666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries.
    Chen H; Armand M; Demailly G; Dolhem F; Poizot P; Tarascon JM
    ChemSusChem; 2008; 1(4):348-55. PubMed ID: 18605101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Design Strategy for High-Redox-Potential and Poorly Soluble n-Type Phenazine Derivatives as Cathode Materials for Lithium Batteries.
    Miao L; Liu L; Zhang K; Chen J
    ChemSusChem; 2020 May; 13(9):2337-2344. PubMed ID: 31968154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fate of phenothiazine-based redox shuttles in lithium-ion batteries.
    Casselman MD; Kaur AP; Narayana KA; Elliott CF; Risko C; Odom SA
    Phys Chem Chem Phys; 2015 Mar; 17(10):6905-12. PubMed ID: 25673473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.