BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 25225054)

  • 1. Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth.
    Roland AB; Ricobaraza A; Carrel D; Jordan BM; Rico F; Simon A; Humbert-Claude M; Ferrier J; McFadden MH; Scheuring S; Lenkei Z
    Elife; 2014 Sep; 3():e03159. PubMed ID: 25225054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin turnover is required to prevent axon retraction driven by endogenous actomyosin contractility.
    Gallo G; Yee HF; Letourneau PC
    J Cell Biol; 2002 Sep; 158(7):1219-28. PubMed ID: 12356866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction.
    Gallo G
    J Cell Sci; 2006 Aug; 119(Pt 16):3413-23. PubMed ID: 16899819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deficient E-cadherin adhesion in C57BL/6J-Min/+ mice is associated with increased tyrosine kinase activity and RhoA-dependent actomyosin contractility.
    Carothers AM; Javid SH; Moran AE; Hunt DH; Redston M; Bertagnolli MM
    Exp Cell Res; 2006 Feb; 312(4):387-400. PubMed ID: 16368433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p116Rip targets myosin phosphatase to the actin cytoskeleton and is essential for RhoA/ROCK-regulated neuritogenesis.
    Mulder J; Ariaens A; van den Boomen D; Moolenaar WH
    Mol Biol Cell; 2004 Dec; 15(12):5516-27. PubMed ID: 15469989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-muscle myosin II regulates neuronal actin dynamics by interacting with guanine nucleotide exchange factors.
    Shin EY; Lee CS; Yun CY; Won SY; Kim HK; Lee YH; Kwak SJ; Kim EG
    PLoS One; 2014; 9(4):e95212. PubMed ID: 24752242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rho GTPase and Shroom direct planar polarized actomyosin contractility during convergent extension.
    Simões Sde M; Mainieri A; Zallen JA
    J Cell Biol; 2014 Feb; 204(4):575-89. PubMed ID: 24535826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RhoA Controls Axon Extension Independent of Specification in the Developing Brain.
    Dupraz S; Hilton BJ; Husch A; Santos TE; Coles CH; Stern S; Brakebusch C; Bradke F
    Curr Biol; 2019 Nov; 29(22):3874-3886.e9. PubMed ID: 31679934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actomyosin-dependent microtubule rearrangement in lysophosphatidic acid-induced neurite remodeling of young cortical neurons.
    Fukushima N; Morita Y
    Brain Res; 2006 Jun; 1094(1):65-75. PubMed ID: 16690038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of Gα12/13 exacerbates apical area dependence of actomyosin contractility.
    Xie S; Mason FM; Martin AC
    Mol Biol Cell; 2016 Nov; 27(22):3526-3536. PubMed ID: 27489340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of actomyosin contractility by PI3K in sensory axons.
    Orlova I; Silver L; Gallo G
    Dev Neurobiol; 2007 Dec; 67(14):1843-51. PubMed ID: 17701990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RhoA-kinase and myosin II are required for the maintenance of growth cone polarity and guidance by nerve growth factor.
    Loudon RP; Silver LD; Yee HF; Gallo G
    J Neurobiol; 2006 Jul; 66(8):847-67. PubMed ID: 16673385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Cannabinoid Receptor CB1 Interacts with the WAVE1 Complex and Plays a Role in Actin Dynamics and Structural Plasticity in Neurons.
    Njoo C; Agarwal N; Lutz B; Kuner R
    PLoS Biol; 2015 Oct; 13(10):e1002286. PubMed ID: 26496209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyk2 downstream of G
    Chaudhary PK; Han JS; Jee Y; Lee SH; Kim S
    Biochem Biophys Res Commun; 2020 Jun; 526(3):738-743. PubMed ID: 32265034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apical Sarcomere-like Actomyosin Contracts Nonmuscle Drosophila Epithelial Cells.
    Coravos JS; Martin AC
    Dev Cell; 2016 Nov; 39(3):346-358. PubMed ID: 27773487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct roles for the two Rho GDP/GTP exchange factor domains of kalirin in regulation of neurite growth and neuronal morphology.
    Penzes P; Johnson RC; Kambampati V; Mains RE; Eipper BA
    J Neurosci; 2001 Nov; 21(21):8426-34. PubMed ID: 11606631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FilGAP and its close relatives: a mediator of Rho-Rac antagonism that regulates cell morphology and migration.
    Nakamura F
    Biochem J; 2013 Jul; 453(1):17-25. PubMed ID: 23763313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of RhoA by lysophosphatidic acid and Galpha12/13 subunits in neuronal cells: induction of neurite retraction.
    Kranenburg O; Poland M; van Horck FP; Drechsel D; Hall A; Moolenaar WH
    Mol Biol Cell; 1999 Jun; 10(6):1851-7. PubMed ID: 10359601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysophosphatidylinositol causes neurite retraction via GPR55, G13 and RhoA in PC12 cells.
    Obara Y; Ueno S; Yanagihata Y; Nakahata N
    PLoS One; 2011; 6(8):e24284. PubMed ID: 21904624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptor-dependent RhoA activation in G12/G13-deficient cells: genetic evidence for an involvement of Gq/G11.
    Vogt S; Grosse R; Schultz G; Offermanns S
    J Biol Chem; 2003 Aug; 278(31):28743-9. PubMed ID: 12771155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.