BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 25225104)

  • 1. Tenascin-R promotes assembly of the extracellular matrix of perineuronal nets via clustering of aggrecan.
    Morawski M; Dityatev A; Hartlage-Rübsamen M; Blosa M; Holzer M; Flach K; Pavlica S; Dityateva G; Grosche J; Brückner G; Schachner M
    Philos Trans R Soc Lond B Biol Sci; 2014 Oct; 369(1654):20140046. PubMed ID: 25225104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R.
    Brückner G; Grosche J; Schmidt S; Härtig W; Margolis RU; Delpech B; Seidenbecher CI; Czaniera R; Schachner M
    J Comp Neurol; 2000 Dec; 428(4):616-29. PubMed ID: 11077416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress.
    Suttkus A; Rohn S; Weigel S; Glöckner P; Arendt T; Morawski M
    Cell Death Dis; 2014 Mar; 5(3):e1119. PubMed ID: 24625978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experience-dependent development of perineuronal nets and chondroitin sulfate proteoglycan receptors in mouse visual cortex.
    Ye Q; Miao QL
    Matrix Biol; 2013 Aug; 32(6):352-63. PubMed ID: 23597636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets.
    Dityatev A; Brückner G; Dityateva G; Grosche J; Kleene R; Schachner M
    Dev Neurobiol; 2007 Apr; 67(5):570-88. PubMed ID: 17443809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neuronal extracellular matrix restricts distribution and internalization of aggregated Tau-protein.
    Suttkus A; Holzer M; Morawski M; Arendt T
    Neuroscience; 2016 Jan; 313():225-35. PubMed ID: 26621125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perineuronal net formation and structure in aggrecan knockout mice.
    Giamanco KA; Morawski M; Matthews RT
    Neuroscience; 2010 Nov; 170(4):1314-27. PubMed ID: 20732394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS.
    Weber P; Bartsch U; Rasband MN; Czaniera R; Lang Y; Bluethmann H; Margolis RU; Levinson SR; Shrager P; Montag D; Schachner M
    J Neurosci; 1999 Jun; 19(11):4245-62. PubMed ID: 10341229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology of perineuronal nets in tenascin-R and parvalbumin single and double knockout mice.
    Haunsø A; Ibrahim M; Bartsch U; Letiembre M; Celio MR; Menoud P
    Brain Res; 2000 May; 864(1):142-5. PubMed ID: 10793198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus.
    Bukalo O; Schachner M; Dityatev A
    Neuroscience; 2001; 104(2):359-69. PubMed ID: 11377840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of perineuronal nets in organotypic mouse brain slice cultures is independent of neuronal glutamatergic activity.
    Reimers S; Hartlage-Rübsamen M; Brückner G; Rossner S
    Eur J Neurosci; 2007 May; 25(9):2640-8. PubMed ID: 17561838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord.
    Galtrey CM; Kwok JC; Carulli D; Rhodes KE; Fawcett JW
    Eur J Neurosci; 2008 Mar; 27(6):1373-90. PubMed ID: 18364019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axon initial segment ensheathed by extracellular matrix in perineuronal nets.
    Brückner G; Szeöke S; Pavlica S; Grosche J; Kacza J
    Neuroscience; 2006; 138(2):365-75. PubMed ID: 16427210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perineuronal nets show intrinsic patterns of extracellular matrix differentiation in organotypic slice cultures.
    Brückner G; Grosche J
    Exp Brain Res; 2001 Mar; 137(1):83-93. PubMed ID: 11310175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-protein interactions between tenascin-R and RPTPζ/phosphacan are critical to maintain the architecture of perineuronal nets.
    Sinha A; Kawakami J; Cole KS; Ladutska A; Nguyen MY; Zalmai MS; Holder BL; Broerman VM; Matthews RT; Bouyain S
    J Biol Chem; 2023 Aug; 299(8):104952. PubMed ID: 37356715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Region and lamina-specific distribution of extracellular matrix proteoglycans, hyaluronan and tenascin-R in the mouse hippocampal formation.
    Brückner G; Grosche J; Hartlage-Rübsamen M; Schmidt S; Schachner M
    J Chem Neuroanat; 2003 Aug; 26(1):37-50. PubMed ID: 12954529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum.
    Carulli D; Rhodes KE; Fawcett JW
    J Comp Neurol; 2007 Mar; 501(1):83-94. PubMed ID: 17206619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The protein tyrosine phosphatase RPTPζ/phosphacan is critical for perineuronal net structure.
    Eill GJ; Sinha A; Morawski M; Viapiano MS; Matthews RT
    J Biol Chem; 2020 Jan; 295(4):955-968. PubMed ID: 31822561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain.
    Vo T; Carulli D; Ehlert EM; Kwok JC; Dick G; Mecollari V; Moloney EB; Neufeld G; de Winter F; Fawcett JW; Verhaagen J
    Mol Cell Neurosci; 2013 Sep; 56():186-200. PubMed ID: 23665579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory experience-dependent formation of perineuronal nets and expression of Cat-315 immunoreactive components in the mouse somatosensory cortex.
    Ueno H; Suemitsu S; Okamoto M; Matsumoto Y; Ishihara T
    Neuroscience; 2017 Jul; 355():161-174. PubMed ID: 28495333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.