These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 25225104)
1. Tenascin-R promotes assembly of the extracellular matrix of perineuronal nets via clustering of aggrecan. Morawski M; Dityatev A; Hartlage-Rübsamen M; Blosa M; Holzer M; Flach K; Pavlica S; Dityateva G; Grosche J; Brückner G; Schachner M Philos Trans R Soc Lond B Biol Sci; 2014 Oct; 369(1654):20140046. PubMed ID: 25225104 [TBL] [Abstract][Full Text] [Related]
2. Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. Brückner G; Grosche J; Schmidt S; Härtig W; Margolis RU; Delpech B; Seidenbecher CI; Czaniera R; Schachner M J Comp Neurol; 2000 Dec; 428(4):616-29. PubMed ID: 11077416 [TBL] [Abstract][Full Text] [Related]
3. Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress. Suttkus A; Rohn S; Weigel S; Glöckner P; Arendt T; Morawski M Cell Death Dis; 2014 Mar; 5(3):e1119. PubMed ID: 24625978 [TBL] [Abstract][Full Text] [Related]
4. Experience-dependent development of perineuronal nets and chondroitin sulfate proteoglycan receptors in mouse visual cortex. Ye Q; Miao QL Matrix Biol; 2013 Aug; 32(6):352-63. PubMed ID: 23597636 [TBL] [Abstract][Full Text] [Related]
5. Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Dityatev A; Brückner G; Dityateva G; Grosche J; Kleene R; Schachner M Dev Neurobiol; 2007 Apr; 67(5):570-88. PubMed ID: 17443809 [TBL] [Abstract][Full Text] [Related]
6. The neuronal extracellular matrix restricts distribution and internalization of aggregated Tau-protein. Suttkus A; Holzer M; Morawski M; Arendt T Neuroscience; 2016 Jan; 313():225-35. PubMed ID: 26621125 [TBL] [Abstract][Full Text] [Related]
7. Perineuronal net formation and structure in aggrecan knockout mice. Giamanco KA; Morawski M; Matthews RT Neuroscience; 2010 Nov; 170(4):1314-27. PubMed ID: 20732394 [TBL] [Abstract][Full Text] [Related]
8. Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS. Weber P; Bartsch U; Rasband MN; Czaniera R; Lang Y; Bluethmann H; Margolis RU; Levinson SR; Shrager P; Montag D; Schachner M J Neurosci; 1999 Jun; 19(11):4245-62. PubMed ID: 10341229 [TBL] [Abstract][Full Text] [Related]
9. Morphology of perineuronal nets in tenascin-R and parvalbumin single and double knockout mice. Haunsø A; Ibrahim M; Bartsch U; Letiembre M; Celio MR; Menoud P Brain Res; 2000 May; 864(1):142-5. PubMed ID: 10793198 [TBL] [Abstract][Full Text] [Related]
10. Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus. Bukalo O; Schachner M; Dityatev A Neuroscience; 2001; 104(2):359-69. PubMed ID: 11377840 [TBL] [Abstract][Full Text] [Related]
11. Formation of perineuronal nets in organotypic mouse brain slice cultures is independent of neuronal glutamatergic activity. Reimers S; Hartlage-Rübsamen M; Brückner G; Rossner S Eur J Neurosci; 2007 May; 25(9):2640-8. PubMed ID: 17561838 [TBL] [Abstract][Full Text] [Related]
12. Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Galtrey CM; Kwok JC; Carulli D; Rhodes KE; Fawcett JW Eur J Neurosci; 2008 Mar; 27(6):1373-90. PubMed ID: 18364019 [TBL] [Abstract][Full Text] [Related]
15. Protein-protein interactions between tenascin-R and RPTPζ/phosphacan are critical to maintain the architecture of perineuronal nets. Sinha A; Kawakami J; Cole KS; Ladutska A; Nguyen MY; Zalmai MS; Holder BL; Broerman VM; Matthews RT; Bouyain S J Biol Chem; 2023 Aug; 299(8):104952. PubMed ID: 37356715 [TBL] [Abstract][Full Text] [Related]
16. Region and lamina-specific distribution of extracellular matrix proteoglycans, hyaluronan and tenascin-R in the mouse hippocampal formation. Brückner G; Grosche J; Hartlage-Rübsamen M; Schmidt S; Schachner M J Chem Neuroanat; 2003 Aug; 26(1):37-50. PubMed ID: 12954529 [TBL] [Abstract][Full Text] [Related]
17. Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum. Carulli D; Rhodes KE; Fawcett JW J Comp Neurol; 2007 Mar; 501(1):83-94. PubMed ID: 17206619 [TBL] [Abstract][Full Text] [Related]
18. The protein tyrosine phosphatase RPTPζ/phosphacan is critical for perineuronal net structure. Eill GJ; Sinha A; Morawski M; Viapiano MS; Matthews RT J Biol Chem; 2020 Jan; 295(4):955-968. PubMed ID: 31822561 [TBL] [Abstract][Full Text] [Related]
19. The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain. Vo T; Carulli D; Ehlert EM; Kwok JC; Dick G; Mecollari V; Moloney EB; Neufeld G; de Winter F; Fawcett JW; Verhaagen J Mol Cell Neurosci; 2013 Sep; 56():186-200. PubMed ID: 23665579 [TBL] [Abstract][Full Text] [Related]
20. Sensory experience-dependent formation of perineuronal nets and expression of Cat-315 immunoreactive components in the mouse somatosensory cortex. Ueno H; Suemitsu S; Okamoto M; Matsumoto Y; Ishihara T Neuroscience; 2017 Jul; 355():161-174. PubMed ID: 28495333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]