These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

640 related articles for article (PubMed ID: 25225186)

  • 1. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system.
    Brooks C; Nekrasov V; Lippman ZB; Van Eck J
    Plant Physiol; 2014 Nov; 166(3):1292-7. PubMed ID: 25225186
    [No Abstract]   [Full Text] [Related]  

  • 2. Genome editing in plants using CRISPR type I-D nuclease.
    Osakabe K; Wada N; Miyaji T; Murakami E; Marui K; Ueta R; Hashimoto R; Abe-Hara C; Kong B; Yano K; Osakabe Y
    Commun Biol; 2020 Nov; 3(1):648. PubMed ID: 33159140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABA-enriched tomato is first CRISPR-edited food to enter market.
    Waltz E
    Nat Biotechnol; 2022 Jan; 40(1):9-11. PubMed ID: 34907351
    [No Abstract]   [Full Text] [Related]  

  • 4. Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis.
    Nonaka S; Arai C; Takayama M; Matsukura C; Ezura H
    Sci Rep; 2017 Aug; 7(1):7057. PubMed ID: 28765632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fixing the tomato: CRISPR edits correct plant-breeding snafu.
    Ledford H
    Nature; 2017 May; 545(7655):394-395. PubMed ID: 28541336
    [No Abstract]   [Full Text] [Related]  

  • 6. Letter to the Editor: The World's First CRISPR Tomato Launched to a Japanese Market: The Social-Economic Impact of its Implementation on Crop Genome Editing.
    Ezura H
    Plant Cell Physiol; 2022 Jun; 63(6):731-733. PubMed ID: 35388425
    [No Abstract]   [Full Text] [Related]  

  • 7. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion.
    Shimatani Z; Kashojiya S; Takayama M; Terada R; Arazoe T; Ishii H; Teramura H; Yamamoto T; Komatsu H; Miura K; Ezura H; Nishida K; Ariizumi T; Kondo A
    Nat Biotechnol; 2017 May; 35(5):441-443. PubMed ID: 28346401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput CRISPR Vector Construction and Characterization of DNA Modifications by Generation of Tomato Hairy Roots.
    Jacobs TB; Martin GB
    J Vis Exp; 2016 Apr; (110):. PubMed ID: 27167304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR keeps going "wild": a new protocol for DNA-free genome editing of tetraploid wild tomatoes.
    Thiruppathi D
    Plant Physiol; 2022 May; 189(1):10-11. PubMed ID: 35244184
    [No Abstract]   [Full Text] [Related]  

  • 10. Generation of a Collection of Mutant Tomato Lines Using Pooled CRISPR Libraries.
    Jacobs TB; Zhang N; Patel D; Martin GB
    Plant Physiol; 2017 Aug; 174(4):2023-2037. PubMed ID: 28646085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of CRISPR-Cas systems in neuroscience.
    Heidenreich M; Zhang F
    Nat Rev Neurosci; 2016 Jan; 17(1):36-44. PubMed ID: 26656253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of clustered regularly interspaced short palindromic repeats- associated protein 9 gene editing technology for treatment of HBV infection].
    Wang YD; Liang QF; Li ZY; Zhao CY
    Zhonghua Gan Zang Bing Za Zhi; 2018 Nov; 26(11):860-864. PubMed ID: 30616324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats.
    Mashimo T
    Dev Growth Differ; 2014 Jan; 56(1):46-52. PubMed ID: 24372523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model.
    Ron M; Kajala K; Pauluzzi G; Wang D; Reynoso MA; Zumstein K; Garcha J; Winte S; Masson H; Inagaki S; Federici F; Sinha N; Deal RB; Bailey-Serres J; Brady SM
    Plant Physiol; 2014 Oct; 166(2):455-69. PubMed ID: 24868032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trait discovery and editing in tomato.
    Rothan C; Diouf I; Causse M
    Plant J; 2019 Jan; 97(1):73-90. PubMed ID: 30417464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR mediated somatic cell genome engineering in the chicken.
    Véron N; Qu Z; Kipen PA; Hirst CE; Marcelle C
    Dev Biol; 2015 Nov; 407(1):68-74. PubMed ID: 26277216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome modification by CRISPR/Cas9.
    Ma Y; Zhang L; Huang X
    FEBS J; 2014 Dec; 281(23):5186-93. PubMed ID: 25315507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants.
    Čermák T; Curtin SJ; Gil-Humanes J; Čegan R; Kono TJY; Konečná E; Belanto JJ; Starker CG; Mathre JW; Greenstein RL; Voytas DF
    Plant Cell; 2017 Jun; 29(6):1196-1217. PubMed ID: 28522548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.